首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由; (2)α4能否由α1,α
已知线性方程组 的通解为[2,1,0,1]T+k[1,一1,2,0]T.记 αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5. 问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由; (2)α4能否由α1,α
admin
2018-09-20
50
问题
已知线性方程组
的通解为[2,1,0,1]
T
+k[1,一1,2,0]
T
.记
α
j
=[a
1j
,a
2j
,a
3j
,a
4j
]
T
,j=1,2,…,5.
问:(1)α
4
能否由α
1
,α
2
,α
3
,α
5
线性表出,说明理由;
(2)α
4
能否由α
1
,α
2
,α
3
线性表出,说明理由.
选项
答案
(1)α
4
能由α
1
,α
2
,α
3
,α
5
线性表出. 由线性非齐次方程组的通解[2,1,0,1]
T
+k[1,一1,2,0]
T
知 α
5
=(k+2)α
1
+(一k+1)α
2
+2kα
3
+α
4
,故 α
4
=一(k+2)α
1
+(k一1)α
2
—2kα
3
+α
5
. (2)α
4
不能由α
1
,α
2
,α
3
线性表出,因对应齐次方程组的基础解系只有一个非零向量,故r(α
1
,α
2
,α
3
,α
4
)=r(α
1
,α
2
,α
3
,α
4
,α
5
)=4—1=3,且由对应齐次方程组的通解知,α
1
一α
2
+2α
3
=0,即α
1
,α
2
,α
3
线性相关,r(α
1
,α
2
,α
3
)<3,若α
4
能由α
1
,α
2
,α
3
线性表出,则r(α
4
,α
1
,α
2
,α
3
)=r(α
1
,α
2
,α
3
)<3,这和r(α
1
,α
2
,α
3
,α
4
)=3矛盾,故α
4
不能由α
1
,α
2
,α
3
线性表出.
解析
转载请注明原文地址:https://kaotiyun.com/show/KJW4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=5x12+5x22+cx32-2x1x2-6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
已知二次型xTAx是正定二次型,x=Cy是坐标变换,证明二次型yTBy是正定二次型,其中B=CTAC.
设函数f(x)连续,且满足求f(x).
在椭圆的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
求证:方程在(0,+∞)内只有两个不同的实根.
设总体X的概率密度为f(x;α,β)=其中α和β是未知参数,利用总体X的如下样本值-0.5,0.3,-0.2,-0.6,-0.1,0.4,0.5,-0.8,求α的矩估计值和最大似然估计值.
设f(x)在[0,1]二阶可导,且|f(0)|≤a,|f(1)|≤a,|f’’(x)|≤b,其中a,b为非负常数,求证:对任何c∈(0,1),有
确定常数a和b的值,使f(x)=当x→0时是x的5阶无穷小量.
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(一1,0,1)T.求A的其他特征值与特征向量;
设x→0时,(1+sinx)x—1是比xtanxn低阶的无穷小,而xtanxn是比l)ln(1+x2)低阶的无穷小,则正整数n等于()
随机试题
车床丝杠螺距为12mm,车削DP为10·1/in的蜗杆,求交换齿轮齿数。
成本控制的重点是
真寒假热证的病机是()。
下列有关用人单位对劳动者竞业限制的说法正确的是:()
A注册会计师负责审计甲公司2017年度财务报表。在运用重要性水平时,A注册会计师遇到下列事项,请代为作出正确的专业判断。使用重要性水平,可能无助于实现下列目的的是()。
一、注意事项本题本由给定资料与申论要求两部分构成二、给定资料1.进入2010年,中国企业在海外市场开始掀起新一轮的并购狂澜。根据创业投资与私募股权研究机构清科研究中心发布的最新研究报告显示,截至到5月底,中国企业海外并购资金总额达284
InWARMADEEASYNormanSolomondemolishesthemythofanindependentAmericanpresszealouslyguardingsacredvaluesoffreeex
《原道觉世训》
简述行为治疗对抑郁症的治疗。
InthefirstparagraphtheauthorintroduceshistopicbyrelatingSony’sQRIOcouldcarryoutallthefollowingworkEXCEPT
最新回复
(
0
)