首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2) T,α2=(1,2,—1,3) T. Bx=0的基础解系为β1=(1,l,2,1) T,β2=(0,—3,1,a) T. 若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2) T,α2=(1,2,—1,3) T. Bx=0的基础解系为β1=(1,l,2,1) T,β2=(0,—3,1,a) T. 若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
admin
2019-08-26
66
问题
设齐次线性方程组Ax=0的基础解系为α
1
=(1,3,0,2)
T
,α
2
=(1,2,—1,3)
T
.
Bx=0的基础解系为β
1
=(1,l,2,1)
T
,β
2
=(0,—3,1,a)
T
.
若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
选项
答案
设非零公共解为γ,则γ既可由α
1
,和α
2
线性表示,也可由β
1
,和β
2
线性表示. 设γ=x
1
α
1
十x
2
α
2
=—x
3
β
1
—x
4
β
2
,则x
1
α
1
十x
2
α
2
+ x
3
β
1
+ x
4
β
2
=0. [*] γ≠0?x
1
,x
2
,x
3
,x
4
不全为零?R(α
1
,α
2
,β
1
,β
2
)<4?a=0. 当a=0时, [*] 所以非零公共解为2tα
1
—taα
2
=t (1,4,l,1)
T
,其中t为非零常数.
解析
【思路探索】设出公共解,进而转化为线性方程组的解.
【错例分析】本题主要错误在于设出公共解,却未能转化为齐次线性方程组的求解.
转载请注明原文地址:https://kaotiyun.com/show/KSJ4777K
0
考研数学三
相关试题推荐
设向量组α,β,γ线性无关,α,β,δ线性相关,则
设A是5×4矩阵,A=(α1,α2,α3,α4),若η1=(1,1,一2,1)T,η2=(0,1,0,1)T是Ax=0的基础解系,则A的列向量组的极大线性无关组可以是
“f(x)在点a连续”是|f(x)|在点a处连续的()条件.
设有两条抛物线y=nx2+和y=(n+1)x2+,记它们交点的横坐标的绝对值为an。求级数的和.
已知随机变量(X,Y)的联合概率密度为求(X,Y)的联合分布函数.
(2013年)设函数f(x)在[0,+∞)上可导,f(0)=0,且.证明:Ⅰ)存在a>0,使得f(A)=1;Ⅱ)对(Ⅰ)中的a,存在ξ∈(0,a),使得.
(2008年)设函数f(x)在区间[一1,1]上连续,则x=0是函数的()
(2015年)为了实现利润最大化,厂商需要对某商品确定其定价模型.设Q为该商品的需求量,p为价格,MC为边际成本,η为需求弹性(η>0).(Ⅰ)证明定价模型为;(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一p,试由(Ⅰ)中的定
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
随机试题
股骨颈内骨折的后期并发症()
腭裂整复术中凿断翼钩是为了松弛哪块肌肉的张力
工程咨询业是智力服务性行业,遵循()、科学、公正的原则,为政府部门和投资者提供咨询服务。
项目划分由项目法人组织监理、设计及施工等单位共同商定,同时确定主要单位工程,主要分部工程、主要隐蔽单元工程和关键部位单元工程,项目法人在主体工程开工前将项目划分表及说明书面报()确认。
企业销售商品时,销售收入确认的条件包括()。
发放现金股利的费用比发放股票股利的费用要大。
心理活动耐受力与()有关。(2003年12月三级真题)
恩格尔系数是食品支出总额占个人消费支出总额的比重。19世纪德国统计学家恩格尔根据统计资料,对消费结构的变化得出一个规律:一个家庭收入越少,家庭收入中(或总支出中)用来购买食物的支出所占的比例就越大,随着家庭收入的增加,家庭收入中(或总支出中)用
人民法院受理原告的起诉后,一定产生的法律后果有()。
MenorcaorMajorca?Itisthattimeoftheyearagain.Thebrochuresarepilingupintravelagentswhilenewspapersandmagazin
最新回复
(
0
)