首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2) T,α2=(1,2,—1,3) T. Bx=0的基础解系为β1=(1,l,2,1) T,β2=(0,—3,1,a) T. 若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
设齐次线性方程组Ax=0的基础解系为α1=(1,3,0,2) T,α2=(1,2,—1,3) T. Bx=0的基础解系为β1=(1,l,2,1) T,β2=(0,—3,1,a) T. 若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
admin
2019-08-26
34
问题
设齐次线性方程组Ax=0的基础解系为α
1
=(1,3,0,2)
T
,α
2
=(1,2,—1,3)
T
.
Bx=0的基础解系为β
1
=(1,l,2,1)
T
,β
2
=(0,—3,1,a)
T
.
若Ax=0和Bx=0有非零公共解,求a的值并求公共解.
选项
答案
设非零公共解为γ,则γ既可由α
1
,和α
2
线性表示,也可由β
1
,和β
2
线性表示. 设γ=x
1
α
1
十x
2
α
2
=—x
3
β
1
—x
4
β
2
,则x
1
α
1
十x
2
α
2
+ x
3
β
1
+ x
4
β
2
=0. [*] γ≠0?x
1
,x
2
,x
3
,x
4
不全为零?R(α
1
,α
2
,β
1
,β
2
)<4?a=0. 当a=0时, [*] 所以非零公共解为2tα
1
—taα
2
=t (1,4,l,1)
T
,其中t为非零常数.
解析
【思路探索】设出公共解,进而转化为线性方程组的解.
【错例分析】本题主要错误在于设出公共解,却未能转化为齐次线性方程组的求解.
转载请注明原文地址:https://kaotiyun.com/show/KSJ4777K
0
考研数学三
相关试题推荐
已知是f(x)的一个原函数,求∫x3f’(x)dx.
求下列定积分:∫01
下列函数f(x)中其原函数及定积分∫-11f(x)dx都存在的是
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(x)=0,f’(x)≥0,g’(x)≥0.证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1).
(2009年)设函数y=f(x)在区间[一1,3]上的图形为则函数F(x)=∫0xf(t)dt的图形为()
(1992年)设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕z轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足的a.(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求
设f(x)在(一∞,+∞)上二阶导数连续,f(0)=01)确定a使g(x)在(一∞,+∞)上连续;2)证明对以上确定的a,g(x)在(一∞,+∞)上有连续一阶导数.
已知对于n阶方阵A,存在自然数k,使得Ak=O,试证明矩阵E-A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
已知二次型f(x1,x2,x3)=2x12+3x22+332+2ax2x3(a>0)通过正交变换化成标准形f=y12+2y22+5y32,求参数a及所用的正交变换矩阵P.
设二元函数f(x,y)=|x-y|φ(x,y),其中φ(x,y)在点(0,0)处的某邻域内连续.证明:函数f(x,y)在点(0,0)处可微的充分必要条件是φ(0,0)=0.
随机试题
资本主义的生产成本是
急性乳腺炎脓肿形成切开引流时应注意
干型营养不良的表现不包括
患者,女,24岁。右下后牙突然自发痛1天。检查:局部牙龈乳头红肿、触痛。如果诊断为急性牙问乳头炎,最佳治疗措施为
包衣片剂不需检查的项目是
失业保障月数的计算公式是()。
人们常说,“身体是革命的本钱”,但一些领导干部和许多模范人物却坚持“小车不倒只管推”。对此。你有何看法?
A、 B、 C、 D、 C图形中小图形的种类数依次是1、2、3、4、(5)。
暖春三月,当你在华南植物园的姜园中漫步时,会看到一种头戴“高帽”的奇特植物,每当微风吹拂,就像是翩翩起舞的“美少女”,甚是惹人爱怜,“她”就是益智,属于姜科,为多年生草本植物,高1—3m;茎丛生;总状花序在花蕾时全部包藏于酷似“高帽”状的总苞片中;花冠白色
ThatisalessonScottSpector,15,learnedthehardway,whenhisphonestartedblastinghis"AmericanIdolTheme"ringtoneas
最新回复
(
0
)