首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A、A为同阶可逆矩阵,则( )
设A、A为同阶可逆矩阵,则( )
admin
2018-07-26
62
问题
设A、A为同阶可逆矩阵,则( )
选项
A、AB=BA.
B、存在可逆矩阵P,使P
-1
AP=B.
C、存在可逆矩阵C,使C
T
AC=B.
D、存在可逆矩阵P和Q,使PAQ=B.
答案
D
解析
因为,方阵A可逆
A与同阶单位阵E行等价,即存在可逆矩阵P,使PA=E.同理,由于B可逆,存在可逆矩阵M,使MB=E.故有PA=MB,
PAM
-1
=B,记M
-1
=Q,则P、Q可逆,使PAQ=B.于是知D正确.
本题考查矩阵可逆、等价、相似、合同、可否乘法交换等概念及其相互关系.注意,A、B为同阶可逆矩阵,则A、B都等价于同阶单位阵,由等价的对称性和传递性立即可知D正确.但A、B却未必相似,故B不对;也未必合同,故C不对.这里应特别注意,A和B有相同的秩,这只是A与B相似的必要条件而非充分条件,也只是A与B合同的必要条件而非充分条件.至于备选项A,可举反例如下:
转载请注明原文地址:https://kaotiyun.com/show/cTW4777K
0
考研数学三
相关试题推荐
设随机变量X与Y独立,且,Y~N(0,1),则概率P{XY≤0}的值为
已知A=,其中a1,a2,…,an两两不等.证明与A可交换的矩阵只能是对角矩阵.
设A,B均是n阶对称矩阵,则AB是对称矩阵的充要条件是____.
设随机变量X的分布律为求X的分布函数F(x),并利用分布函数求P{2<X≤6},P{X<4},P{1≤X<5}.
设A是n阶反对称矩阵,证明(E-A)(E+A)-1是正交矩阵.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=其中A*是A的伴随矩阵,E为n阶单位矩阵.(Ⅰ)计算并化简PQ;(Ⅱ)证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
若A是对称矩阵,B是反对称矩阵,则AB是反对称矩阵的充要条件是AB=BA.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα,…,Ak-1α是线性无关的.
设A是n阶反对称矩阵,x是n维列向量,如Ax=Y,证明x与y正交.
随机试题
公共关系研究人和人的关系的角度是()。
下列选项中不属于学生主观能动性的表现是()
生产力和生产资料共同构成了社会的生产方式。()
动脉粥样斑块中,不具有的细胞是
A.传染性单核细胞增多症B.神经母细胞瘤C.急性白血病D.慢性白血病E.非霍奇金淋巴瘤女,10岁,喘憋2周,不能平卧。体检:左锁骨上及左颈部多个肿大淋巴结,胸部X线示上纵隔明显增宽,气管影偏向右侧,变窄。最可能的诊断为
患者,女,58岁。纳差、上腹部不适3年。胃镜检查示:胃黏膜变薄,皱襞稀疏。Hb86g/L,MCV102fl。该患者应主要补充的维生素是
女,50岁。上腹痛3个月余,2个月前钡剂造影检查提示胃窦后壁溃疡,经抗酸药物治疗近8周,疼痛曾一过性缓解。进一步处理应首选
下列有关收入确认的表述中,正确的有( )。
人生は何か、これはだれ()はっきり言えないだろう。
《超人总动员》是知名动画导演布拉德.伯德加入皮克斯执导的首部作品,故事讲述显赫一时的超人家族,过去参与过不少打击犯罪的英雄事迹,因过度虚耗政府库房支出,超人先生被迫隐姓埋名兼改头换面,化身肥佬保险经纪人,和爱妻、三名子女住在大城市的郊区,过着跟一般正常人同
最新回复
(
0
)