首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f’(ξ)=0.
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f’(ξ)=0.
admin
2021-02-25
42
问题
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f’(ξ)=0.
选项
答案
因为f(x)在[0,2]上连续,且f(1)<f(0)<f(2),由介值定理,存在一点x
0
∈(1,2),使f(x
0
)=f(0)=1,在 [0,x
0
]上,由罗尔定理,至少存在一点[*],使f’(ξ)=0.
解析
本题考查中值问题的证明.欲证f’(ξ)=0,相当于证方程f’(x)=0有根,因此考虑用罗尔定理,只需找到a,b∈[0,2],使f(a)=f(b),注意到f(1)<f(0)<f(2),由介值定理,可找到一点x
0
∈[1,2],使f(0)=f(x
0
),用罗尔定理得结论.
转载请注明原文地址:https://kaotiyun.com/show/vK84777K
0
考研数学二
相关试题推荐
(2012年试题,三)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’(x)+f(x)=2ex求f(x)的表达式;
(1998年)已知α1=[1,4,0,2]T,α2=[2,7,1,3]T,α3=[0,1,-1,a]T,β=[3,10,6,4]T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3
已知函数f(x)=f(x)。若x→0时,f(x)-a与xk是同阶无穷小量,求常数k的值。
(2002年)设函数f(χ)在χ=0的某邻域内具有二阶连续导数,且f(0)≠0,f′(0)≠0,f〞(0)≠0.证明:存在惟一的一组实数λ1,λ2,λ3,使得当h→0时,λ1f(h)+λ2f(2h)+λ3f(3h)-f(0)是比h2高阶的无穷小.
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内大于零,并满足xf’(x)=f(x)+x2(a为常数),又曲线y=f(x)与x=1,y=0所围的图形s的面积值为2。求函数f(x)。并问a为何值时,图形S绕x轴旋转一周所得旋转体的体积最小.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
设y1=ex,y2=x2为某二阶齐次线性微分方程的两个特解,则该微分方程为__________.
设f(χ)在[0,1]连续,且对任意χ,y∈[0,1]均有|f(χ)-f(y)|≤M|χ-y|,M为正的常数,求证:
设f(x)在(0,+∞)内一阶连续可微,且对x∈(0,+∞)满足x∫01f(xt)dt=2∫0xf(t)dt+xf(x)+x3,又f(1)=0,求f(x).
随机试题
PublicperceptionofsuccessintheU.S.mightbetotallymisguided.While92%ofpeoplebelieveotherscaremostaboutfame
幼儿园最常用的评价是()
急性阑尾炎发病已4天。腹痛稍减轻。但仍发热,右下腹可触及有压痛的肿块。应采取的治疗方案是
患者,女性,20岁,左下第一磨牙颌面龋洞,达牙本质浅层,探稍敏感,冷刺激进洞后稍敏感。该患牙的诊断可能为
既滋补肝肾,又清虚热的药物是
当患者发生青霉素过敏性休克时,在皮下注射0.1%盐酸肾上腺素液1ml的同时应立即
(2016年)甲股份有限公司(以下简称“甲公司”)为A股上市公司。2015年8月3日,乙有限责任公司(以下简称“乙公司”)向中国证监会、证券交易所提交权益变动报告书,称其自2015年7月20日开始持有甲公司股份,截至8月1日,已经通过公开市场交易持有该公司
陈独秀在《青年杂志》创刊号上宣称“批评时政,非其旨也。”这预示新文化运动()。
求函数f(χ)=(2-t)e-tdt的最值.
IBMresearchersareattemptingtowarmuphuman-computerrelationships.Forexample,IBM,InternationalBusinessMachines,hasb
最新回复
(
0
)