首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 设函数f(x)=∫01∣t2-x2∣dt(x>0),求f′(x),并求f(x)的最小值.
[2016年] 设函数f(x)=∫01∣t2-x2∣dt(x>0),求f′(x),并求f(x)的最小值.
admin
2019-04-05
42
问题
[2016年] 设函数f(x)=∫
0
1
∣t
2
-x
2
∣dt(x>0),求f′(x),并求f(x)的最小值.
选项
答案
f(x)为含参变量x的定积分,首先应根据参变量x取值的情况求出f(x) 的表示式,再求出f′(x),最后利用命题1.2.5.5求出f(x)的最小值. 由f(x)=∫
0
1
∣t
2
-x
2
∣dt(x>0)求出f(x)和f′(x)的分段表示式. 当 0<x<1时,f(x)=∫
0
1
∣t
2
-x
2
∣dt=∫
0
x
(x
2
一t
2
)dt+∫
x
1
(t
2
一x
2
)dt =x
3
一[*]x
3
+∫
x
1
t
2
dt一x
2
(1一x)=[*]x
3
一x
2
+[*], f′(x)=4x
2
一2x. 当x≥1时,f(x)=∫
0
1
∣t
2
-x
2
∣dt=∫
0
1
(x
2
一t
2
)dt=x
2
一[*], f′(x)=2x. 故[*] 当0<x<1时,令f′(x)=4x
2
一2x=0得x=[*]. 又f″(x)=8x一2,f″([*])=2>0,故x=[*]为0<x<1内的极小值点.又驻点x=[*]. 唯一,由命题1.2.5.5知x=[*]为0<x<1内的最小值点,且最小值为 [*] 当x≥1时,令f′(x)=2x=0,得x=0.因不满足题设的要求(x>0),舍去,故f(x)的最小值为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/KWV4777K
0
考研数学二
相关试题推荐
求齐次线性方程组的基础解系.
设某商品的需求量Q是价格P的函数,该商品的最大需求量为1000(即P=0时,Q=1000),已知需求量的变化率(边际需求)为求需求量Q与价格P的函数关系.
求下列函数的带皮亚诺余项至括号内所示阶数的麦克劳林公式:(Ⅰ)f(x)=excosx(x3);(Ⅱ)f(x)=(x3).(Ⅲ)f(x)=,其中a>0(x2).
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g’’(x)≠0,f(A)=f(B)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dtG(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
[2009年2]e-xsinnxdx=__________.
[2018年]已知a是常数,A=可经初等列变换化为矩阵B=求满足AP=B的可逆矩阵P.
[2018年]∫-10dx∫-x2-x2(1一xy)dy+∫01dx∫x2-x2(1一xy)dy=().
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
随机试题
慢性支气管炎可以引起()
下列肢体测量方法中,哪项是错误的
药物利用指数(DUI)大于1,可以提示
大货车的净宽要求为()。
某公司2014年自行计算的会计利润为一2万元,经税务师事务所审计后发现以下事项:企业将12月15日购入的设备在当月计提了折旧5万元,当年发生的公益性捐赠5万元。经税务师事务所作纳税调增的其他项目金额30万元。则该公司2014年可以在企业所得税前列支的公益性
()是我国市场经济条件下大力提倡并得以广泛使用的一种合同形式,它具有公开、公平、公正的特点,能够提高物品采购合同的透明度。
既是海上画派的代表人物,又曾担任西泠印社首位社长的艺术家是()。
A.switchingtoB.flourishC.marketplacePhrases:A.whichcompanieswill【T1】______B.whohavetheoptionof【T2】______trucks
PrintFormat(1234.56,"###.#")语句的输出结果是
A、Atapublicforum.B、Inanauditorium.C、OnTV.D、Inaclassroom.C综合推断题。女士在对话开始欢迎男士到他们的节日之中,接下来还提到了电视观众(viewers),由此推断,这段访问应该是
最新回复
(
0
)