首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2016年] 设函数f(x)=∫01∣t2-x2∣dt(x>0),求f′(x),并求f(x)的最小值.
[2016年] 设函数f(x)=∫01∣t2-x2∣dt(x>0),求f′(x),并求f(x)的最小值.
admin
2019-04-05
25
问题
[2016年] 设函数f(x)=∫
0
1
∣t
2
-x
2
∣dt(x>0),求f′(x),并求f(x)的最小值.
选项
答案
f(x)为含参变量x的定积分,首先应根据参变量x取值的情况求出f(x) 的表示式,再求出f′(x),最后利用命题1.2.5.5求出f(x)的最小值. 由f(x)=∫
0
1
∣t
2
-x
2
∣dt(x>0)求出f(x)和f′(x)的分段表示式. 当 0<x<1时,f(x)=∫
0
1
∣t
2
-x
2
∣dt=∫
0
x
(x
2
一t
2
)dt+∫
x
1
(t
2
一x
2
)dt =x
3
一[*]x
3
+∫
x
1
t
2
dt一x
2
(1一x)=[*]x
3
一x
2
+[*], f′(x)=4x
2
一2x. 当x≥1时,f(x)=∫
0
1
∣t
2
-x
2
∣dt=∫
0
1
(x
2
一t
2
)dt=x
2
一[*], f′(x)=2x. 故[*] 当0<x<1时,令f′(x)=4x
2
一2x=0得x=[*]. 又f″(x)=8x一2,f″([*])=2>0,故x=[*]为0<x<1内的极小值点.又驻点x=[*]. 唯一,由命题1.2.5.5知x=[*]为0<x<1内的最小值点,且最小值为 [*] 当x≥1时,令f′(x)=2x=0,得x=0.因不满足题设的要求(x>0),舍去,故f(x)的最小值为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/KWV4777K
0
考研数学二
相关试题推荐
设矩阵.已知线性方程组Ax=β有解但不唯一,试求:(1)a的值;(2)正交矩阵Q,使QTAQ为对角矩阵.
设f(x,y)在点O(0,0)的某邻域U内连续,且.试讨论f(0,0)是否为f(x,y)的极值?是极大值还是极小值?
设函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(0)=0,f(1)=
计算下列反常积分:
已知极坐标系下的累次积分.其中a>0为常数,则I在直角坐标系下可表示为__________.
(2018年)设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则
(2012年试题,二)设A为3阶矩阵,|A|=3,A*为A的伴随矩阵,若交换A的第1行与第2行得矩阵B,则|BA*|__________.
[2012年]设an>0(n=1,2,3,…),Sn=a1+a2+a3+…+an,则数列{Sn}有界是数列{an}收敛的().
[2003年]有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
[2018年]已知连续函数f(x)满足∫0xf(t)dt+∫0xtf(x一t)dt=ax2.若f(x)在区间[0,1]上的平均值为1,求a的值.
随机试题
Thechapteronreimbursementsintheemployeehandbookadvises______toreportanytravelexpensestothefinancialdepartment.
工作分享
下列哪两个因素相加,对胃、十二指肠黏膜更具侵袭力()。
患者男性,39岁,反复发作性头痛1Jb悸、出汗3年,再发1h急诊入院。查体发现面色苍白,血压200/130mmHg,心率136/min。为对患者进行初筛诊断,以下哪种检查最先考虑
曲某不懂法律,私自成立“放心保险公司”,使用假印章和变造的保险单与保险人签订保险合同,收取保费。投保人竟络绎不绝,曲某因此而收取了近80余万元的保费。投保人发生险损时,曲某也会理赔。曲某的行为构成:
安全教育的要求不包括( )。
“出口口岸”栏应填()。“指运港”栏应填()。
下列不属于治安行政处罚的是()。
有以下程序#include#definef(x)x*x*xmain(){inta=3,s,t;s=f(a+1);t=f((a+1));printf("%d,%d\n",s,t);}程序运行后的输出结果是()。
ThepassagegivesadescriptionofthecontaminationinNewOrleansafterHurricaneKatrina.Alloftheseconditionsaretobe
最新回复
(
0
)