首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Ax=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均是Ax=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A
设有齐次线性方程组Ax=0和Ax=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均是Ax=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A
admin
2014-01-26
58
问题
设有齐次线性方程组Ax=0和Ax=0,其中A,B均为m×n矩阵,现有4个命题:
①若Ax=0的解均是Ax=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解.
以上命题正确的是
选项
A、①②.
B、①③.
C、②④.
D、③④.
答案
B
解析
[分析] 本题也可找反例用排除法进行分析,但①和②两个命题的反例比较复杂一些,关键是抓住③与④,迅速排除不正确的选项.
[详解] 若Ax=0与Bx=0同解,则n-r(A)=n-r(B),即r(A)=r(B),命题③成立,可排除(A),(C);但反过来,若r(A)=r(B),则不能推出Ax=0与Ax=0同解,如
,则r(A)=r(B)=1,但Ax=0与Bx=0与Bx=0不同解,可见命题④不成立,排除(D),故应选(B).
[评注] Ax=0与Bx=0同解的充要条件是A,B的行向量组等价.
转载请注明原文地址:https://kaotiyun.com/show/Km34777K
0
考研数学二
相关试题推荐
(2009年)求二元函数f(x,y)=x2(2+y2)+ylny的极值。
(04年)函数f(χ)=在下列哪个区间内有界:【】
(11年)设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示.(Ⅰ)求a的值;(Ⅱ)将β1,β2,β3用α1,α2,α
(11年)设A为3阶实对称矩阵,A的秩为2,且(Ⅰ)求A的所有特征值与特征向量.(Ⅱ)求矩阵A.
设线性方程组与方程(Ⅱ):x1+2x2+x3=a-1有公共解,求a的值及所有公共解.
(2015年)为了实现利润的最大化,厂商需要对某商品确定其定价模型,设Q为该商品的需求量,P为价格,MC为边际成本,η为需求弹性(η>0)。(I)证明定价模型为(Ⅱ)若该商品的成本函数为C(Q)=1600+Q2,需求函数为Q=40一P,试由(I)中的定
[2008年]设n元线性方程组AX=b,其中当a为何值时,该方程组有无穷多解,并求通解.
[2009年]设对上题中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2000年)设A,B是两个随机事件,随机变量试证明随机变量X和Y不相关的充分必要条件是A与B相互独立。
(2005年)设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0。证明:对任何a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(a)g(1)。
随机试题
Sincewearesocialbeings,thequalityofourlivesdependsinlargemeasureonourinterpersonalrelationships.One【C1】______o
A、直接接触药品的包装材料B、直接接触药品的包装的标签C、内标签以外的其他包装的标签D、药品包装上印有或者贴有的内容E、内标签以外的其他包装材料药品外标签是指
肺通气中所遇到的弹性阻力主要是
某患者,29岁。午后潮热,身热不扬,胸脘痞闷,舌象应该为
单元工程或工序质量经鉴定达不到设计要求,经加固补强后,改变外形尺寸或造成永久性缺陷的,经项目法人、监理及设计单位确认能基本满足设计要求,其质量可按()处理。
Excel中,修改工作表名字的操作可以从()工作表标签开始。
银行监管机构为了促进商业银行审慎经营.维持金融体系稳定而规定的银行必须持有的资本是()。
贯穿2015年政府工作报告的两条思想主线是:
一个好的商业模式要为利益的相关方创造价值。就拿故宫来说,北京有个故宫博物院,台湾地区也有一个故宫——台北故宫博物院,当然台北故宫的宝贝都是当年从北京运过去的。因为北京的故宫是正宗的,每年到北京故宫的人,比去台北故宫的人多50倍以上,并且北京故宫的门票比台北
下列犯罪中,以非法占有目的为构成要件的是()。
最新回复
(
0
)