首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2003年)曲面z=z2+y2与平面2x+4y—z=0平行的切平面的方程是_____________。
(2003年)曲面z=z2+y2与平面2x+4y—z=0平行的切平面的方程是_____________。
admin
2018-03-11
33
问题
(2003年)曲面z=z
2
+y
2
与平面2x+4y—z=0平行的切平面的方程是_____________。
选项
答案
2x+4y—z=5
解析
令F(x,y,z)=z—x
2
一y
2
,则F′
x
=一2x,F′
y
=一2y,F′
z
=1。
设切点坐标为(x
0
,y
0
,z
0
),则切平面的法向量为{一2x
0
,一2y
0
,1},已知其与平面2x+4y—z=0平行,因此有
可解得x
0
=1,y
0
=2,相应地有z
0
=x
0
2
+y
0
2
=5。
故所求的切平面方程为2(x一1)+4(y一2)一(z一5)=0,即2x+4y—z=5。
转载请注明原文地址:https://kaotiyun.com/show/Kqr4777K
0
考研数学一
相关试题推荐
以下4个结论:(1)教室中有r个学生,则他们的生日都不相同的概率是;(2)教室中有4个学生,则至少两个人的生日在同一个月的概率是;(3)将C,C,E,E,I,N,S共7个字母随机地排成一行,恰好排成英文单词SCIENCE的概率是;(4)袋中有编号为
设随机向量(X,Y)的概率密度f(x,y)满足f(x,y)一f(-x,y),且ρXY存在,则ρXY=()
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,向量组α1,α2,α3,α4线性无关;
设A为n阶非奇异矩阵,α为n维列向量,b为常数.记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
求微分方程的通解,并求满足y(1)=0的特解.
已知方程组与方程组是同解方程组,试确定参数a,b,c.
设R3中两个基α1=[1,1,0]T,α2=[0,1,1]T,α3=[1,0,1]T;β1=[1,0,0]T,β2=[1,1,0]T,β3=[1,1,1]T.求在上述两个基下有相同坐标的向量.
(1)证明曲线积分在曲线L不经过x轴的情况下,积分与路径无关;(2)如果曲线L的两端点为A(π,1)及B(π,2),计算积分的值。
(2001年)设函数z=f(x,y)在点(1,1)处可微,且f(1,1)=1,φ(x)=f(x,f(x,x))。求
随机试题
基本竞争战略不包含()。
里格斯认为在一个融合的社会里,()
下列关于最高计量标准和次级计量标准描述中,错误的是_________。
人民调解委员会是群众性自治组织,工作在()指导下进行。
一般资料:求助者,女性,30岁,公务员。案例介绍:求助者半年前因感冒诱发心肌炎,住院治疗一月余。医生嘱咐减少体力活动,避免疲劳,建议静养一周。因其孩子才两岁,一次夜间发烧,她喂孩子吃药,帮孩子测体温,基本一夜没睡,清晨突感心慌心悸,出虚汗,感到极
“老骥伏枥,志在千里。烈士暮年,壮心不已”出自()。
税务机关依照法定的税种、税率对某企业征税,这一行为是()。
文化批评要说的不是象牙塔里的经院哲学,不是被术语包裹得严严实实或者云遮雾罩的高头讲章,因为它面对的是大众日常生活中感到困惑的文化现象,应该是为大众释疑解惑的良师益友。文化批评要说的不是简单直白搬用意识形态用语的官话,不是藻辞华丽排比连连的套话,也不是漫无边
FDDI是双环结构,其中一个为主环,一个为备用环,这样可以保证网络的可靠性。为了消除环网中的时钟偏移,FDDI使用了(171)方案,并规定进入站点缓冲器的数据时钟由输入信号的时钟确定,缓冲器的输出时钟信号由(172)确定。
请根据图所示网络结构回答问题。如果将172.16.17.128/25划分3个子网,其中第一个子网能容纳50台主机,另外两个子网均能容纳20台主机,要求网络地址从小到大依次分配给3个子网,第2个子网的掩码是________,可用的IP地址段是_____
最新回复
(
0
)