首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1999年试题,九)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.通过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯:形面积
(1999年试题,九)设函数y(x)(x≥0)二阶可导,且y’(x)>0,y(0)=1.通过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯:形面积
admin
2021-01-19
62
问题
(1999年试题,九)设函数y(x)(x≥0)二阶可导,且y
’
(x)>0,y(0)=1.通过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S
1
,区间[0,x]上以y=y(x)为曲边的曲边梯:形面积记为S
2
,并设2S
1
一S
2
恒为1,求此曲线),=y(x)的方程.
选项
答案
由题设,曲线y=y(x)上点P(x,y)处的切线方程为y一y=y
’
(x)(X一x),它与x轴的交点为[*].从而[*]又由已知,[*].由条件2S
1
一S
2
=1知[*]将上式两边对x求导并化简得yy
’’
=y
’2
.令p=y
’
代入上式,则[*],分离变量得[*],积分解得p=C
1
y,因此[*],于是y=e
C
1
x+C
2
;又由y(0)=1,y
’
(0)=1,可得C
1
=1,C
2
=0,所以所求曲线的方程是y=e
x
.问题.
解析
本题是一道综合题,涉及切线问题、平面图形的面积公式、含变限积分的函数方程和微分方程问题,该题没有直接给出含变限积分的函数方程,而是由变化区间[0,x]上的面积用变限积分
来表示,同样,以后在求变化区间上的体积、弧长等的时候,均可以转化为含有变限积分的函数方程
转载请注明原文地址:https://kaotiyun.com/show/L384777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)上可导,f(0)=0,其反函数为g(x),若求f(x).
设函数f(x)在[0,a]上可导,且f(0)=0,f’(x)单调增加,证明:
设A是n阶非零实矩阵,满足A*=AT.证明|A|>0.
设其中A,B为n阶矩阵,A,B的伴随矩阵为A*,B*,求C的伴随矩阵C*.
设n阶矩阵A正定,X=(x1,x2,…,xn)T,证明:二次型f(x1,x2,…,xn)=为正定二次型.
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是A的伴随矩阵,E为n阶单位矩阵。证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2.(Ⅰ)证明:α1,α2正交.(Ⅱ)求AX=α2的通解.
微分方程满足初始条件y|x=2=1的特解是_________。
设函数f(x)处处可导,且0≤f’(x)≤(k>0为常数),又设x0为任意一点,数列{x0}满足xn=f(xn-1)(n=1,2,…),试证:当n→∞时,数列{xn}的极限存在.
随机试题
行政机关实施行政指导,应当:()
肝昏迷病人前驱期(一期)最早的临床表现是
儿童烧伤面积计算法,哪一项是正确的:
某医院对10名氟作业工人分别编号,分为10组,并测定每名工人在工前、工中和工后3个时间点的尿氟含量。检验假设H0为
低温保冷工程中常用的绝热材料有()。
项目结构分解并没有统一的模式,但应结合项目的特点并考虑()。
(2016)明确的共同目标是班级管理的指南,班级管理的目标就是要把班级打造成四个共同体,即“学习共同体、文化共同体、()”。
下列选项中,具有填补法律空白和漏洞作用的法律方法包括()。(2012年真题)
Look!The___________upatthelake___________justbreathtaking.
Accordingtothenews,theplanecrashed______.
最新回复
(
0
)