首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵 其中A*是A的伴随矩阵,E为n阶单位矩阵。 证明矩阵Q可逆的充分必要条件是αTA—1α≠b。
admin
2019-06-28
52
问题
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵
其中A
*
是A的伴随矩阵,E为n阶单位矩阵。
证明矩阵Q可逆的充分必要条件是α
T
A
—1
α≠b。
选项
答案
由下三角形行列式及分块矩阵行列式的运算,有 [*] |P||Q|=|PQ|=[*]=|A|
2
(b一α
T
A
—1
α)。 因为矩阵A可逆,行列式|A|≠0,故|Q|=|A|(b一α
T
A
—1
α)。 由此可知,Q可逆的充分必要条件是b一α
T
A
—1
α≠0,即α
T
A
—1
α≠b。
解析
转载请注明原文地址:https://kaotiyun.com/show/JdV4777K
0
考研数学二
相关试题推荐
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示。
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
设A,B为同阶方阵。若A,B相似,证明A,B的特征多项式相等;
设A为n阶矩阵,A的各行元素之和为0且r(A)=n-1,则方程组AX=0的通解为________
若函数f(χ)在χ=1处的导数存在,则极限=_______.
设z=f(t,et)dt,其中f是二元连续函数,则dz=________.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记证明二次型f对应的矩阵为2ααT+ββT;
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
已知函数f(x,y)满足=2(y+1),且f(y,y)=(y+1)2-(2-y)lny,求曲线f(x,y)=0所围成的图形绕直线y=-1旋转所成旋转体的体积。
随机试题
简述讨价过程的三个阶段。
下列关于肺毛细血管楔压的叙述,恰当的是
腌制或酸渍的肉类、蔬菜食品中可能含有较高浓度的
下列各项中,不属于抵押合同一般应当包括的条款的是()。
实现德育的最基本途径是()
义利之辩是我国古代伦理学上争论激烈的一个问题,争论的实质是把什么作为判断事物价值的标准。下列主张以“利”作为判断事物价值标准的是()。
1915年9月,陈独秀在上海创办《青年杂志》。他在该刊发刊词中宣称,“盖改造青年之思想,辅导青年之修养,为本志之天职。批评时政,非其旨也。”此时陈独秀把主要注意力倾注于思想变革的原因是()
王工作为一个大项目的项目经理,最近将其中一个子项目分派给了一个分包商,李华是分包商的项目经理,刚刚从事项目管理工作,但是与王工比较熟悉。王工可建议李华首先()。
下列关于RPR技术的描述中,错误的是______。
Wehavetosubjecttheredesignedcarseattothetesttoofficiallyconfirmthatitis_______strong.
最新回复
(
0
)