首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 设函数y=f(x)在区间[-1,3]上的图形为 则函数的图形为( ).
[2009年] 设函数y=f(x)在区间[-1,3]上的图形为 则函数的图形为( ).
admin
2019-03-30
63
问题
[2009年] 设函数y=f(x)在区间[-1,3]上的图形为
则函数
的图形为( ).
选项
A、
B、
C、
D、
答案
D
解析
解一 为判别F(x)的图形,首先要明确在各个区间上F(x)的性质.
(1)当x∈[-1,0]时,f(x)=1,F’(x)=f(x)=1>0.故F(x)单调增加,且
由F(0)=0排除(C),由F(x)=x<0,x∈[-1,0),排除(A)、(C).
(2)当x∈[0,1]时,F’(x)=f(x)≤0,F(x)单调下降,且
故排除(C).
(3)当x∈(2,3]时,f(x)=0
即F(x)在x=2处连续.
事实上,f(x)是在[-1,3]上仅有两点x
1
=0,x
2
=2不连续的连续函数,由命题1.3.4.1(2)知,f(x)可积,再由命题1.3.4.2(1)知,F(x)必在[-1,3]上连续,据此排除(B).于是仅(D)入选.
解二 f(x)在区间[-1,3]上是分段连续且是有界函数,由命题1.3.4.1(2)知,f(x)在[-1,3]可积,再由命题1.3.4.2(1)知,
在[-1,3]上连续.因此
在x=2处连续,而选项(B)中的F(x)在x=2处不连续,排除(B).
由定积分性质
而(C)中F(0)=1≠0,排除(C).又当x∈[-1,0)时,而(A)中F(x)≥0,排除(A).仅(D)入选.
注:命题1.3.4.1 (1)若f(x)在[a,b]上连续,则f(x)在[a,b]上可积;
(2)若f(x)在[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积;
命题1.3.4.2 (1)若f(x)在[a,b]上可积,则对任意x∈[a,b],变上限积分函数在[a,b]上连续;
转载请注明原文地址:https://kaotiyun.com/show/L4P4777K
0
考研数学三
相关试题推荐
二次型f(x1,x2,x3)=(a1x1+a2x2+a3x3)(b1x1+b2x2+b3x3)的矩阵为________。
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
设函数f(t)连续,则二重积分dθ∫2cosθ2f(r2)rdr=()
将一枚匀称的硬币独立地掷三次,记事件A=“正、反面都出现”;B=“正面最多出现一次”;C=“反面最多出现一次”,则下列结论中不正确的是()
设(X,Y)的联合分布函数为其中参数λ>0,试求X与Y的边缘分布函数。
设二维随机变量(X,Y)在xOy平面上由直线y=x与曲线y=x2所围成的区域上服从均匀分布,则P{0<x<=________。
设f(x)在区间[a,b]上二阶可导且f’’(x)≥0.证明:(b-a)f≤∫abf(x)dx≤[f(a)+f(b)]
设f(x)是以T为周期的连续函数,且也是以T为周期的连续函数,则b=_________.
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为().
随机试题
19世纪末发现的主要病原体不包括
免疫球蛋白的基本结构是
肺结核患者服用两种以上抗结核药物的最主要的原因是
处理相邻关系的原则包括( )。
“天伦”号货轮在从香港至日本的航行中因遇雷雨天气,使船上部分货物失火燃烧,大火蔓延到机舱。船长为灭火,命令船员向舱中灌水,由于船舶主机受损,不能继续航行。船长雇拖轮将“天伦”号拖到避难港。下列选项哪个不应列入共同海损?()
城市燃气、热力管道工程施工过程中,在管道上开孔时,开孔不应开在焊缝上且开孔的边缘距焊缝之间的距离应大于()mm。
基金销售机构的职责规范包括()。[2015年12月真题]
用支出法核算GDP包括()。
均衡国民收入等于()。
NeverGiveUpWriteanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)describethedrawingbr
最新回复
(
0
)