首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的3个解向量,且 求该方程组的通解.
设4元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的3个解向量,且 求该方程组的通解.
admin
2020-06-05
34
问题
设4元非齐次线性方程组的系数矩阵的秩为3,已知η
1
,η
2
,η
3
是它的3个解向量,且
求该方程组的通解.
选项
答案
记该非齐次线性方程组为Ax=b,它对应的齐次线性方程组为Ax=0.根据齐次线性方程组的性质知,方程Ax=0的基础解系所含向量个数为4-3=1,即它的任一非零解都是它的一个基础解系.另一方面,记向量ξ=2η
1
-(η
2
+η
3
),则 Aξ=A(2η
1
-η
2
-η
3
)=2Aη
1
-Aη
2
-Aη
3
=2b-b-b=0 计算可得ξ=(3,4,5,6)
T
≠0.从而ξ就是方程Ax=0的一个基础解系,根据非齐次线性方程组解的结构知,原方程组的通解为 x=cξ+η
1
=[*](c∈R)
解析
转载请注明原文地址:https://kaotiyun.com/show/L8v4777K
0
考研数学一
相关试题推荐
已知向量的始点A(4,0,5),则B的坐标为()
设n阶矩阵A,B等价,则下列说法中,不一定成立的是()
设f(x),g(x)是连续函数,当x→0时,f(x)与g(x)是等价无穷小,令F(x)=∫0xf(x-t)dt,G(x)=∫01xg(xt)dt,则当x→0时,F(x)是G(x)的().
设A,B是n阶矩阵,则C=的伴随矩阵是
微分方程y"一4y=e2x+x的特解形式为().
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α
若向量组α1,α2,α3,α4线性相关,且向量α4不可由向量组α1,α2,α3线性表示,则下列结论正确的是().
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
设α1,α2,α3,α4为四维非零列向量组,令A=(α1,α2,α3,α4),AX=0的通解为X=k(0,一1,3,0)T,则A*X=0的基础解系为()
随机试题
确定德育内容的依据不包括()。
与优势种相伴存在,但在群落中不起主要作用的常见种称为____________。
在0.5Tesla的场强中,氢质子(1H)的共振频率约为
DNA双螺旋结构模型的阐明,标志着生命科学研究进入了分子生物学时代,具有重大而深远的意义。该结构模型是
上肢的锥体束征为
在我国权证清算交收模式上,上海市场和深圳市场是一致的。()
下列各项中,属于“固定资产清理”科目借方登记的项目有()。
呼吸作用是生物体细胞把有机物氧化分解并产生能量的过程,没有氧气参与的呼吸称为无氧呼吸。无氧呼吸是指细胞在缺氧的条件下,通过酶的催化作用,把葡萄糖等有机物分解为尚未彻底氧化的产物。下列现象与无氧呼吸有关的是()。
有一种长着红色叶子的草,学名叫abana,在地球上极稀少。北美的人都认识一种红色叶子的草,这种草在那里很常见。从上面的事实不能得出以下哪项结论?
著名的TCP/1P协议是指互联网络的信息交换、规则与规范的集合体,其中的TCP是指【 】,IP是指【 】。
最新回复
(
0
)