首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的3个解向量,且 求该方程组的通解.
设4元非齐次线性方程组的系数矩阵的秩为3,已知η1,η2,η3是它的3个解向量,且 求该方程组的通解.
admin
2020-06-05
42
问题
设4元非齐次线性方程组的系数矩阵的秩为3,已知η
1
,η
2
,η
3
是它的3个解向量,且
求该方程组的通解.
选项
答案
记该非齐次线性方程组为Ax=b,它对应的齐次线性方程组为Ax=0.根据齐次线性方程组的性质知,方程Ax=0的基础解系所含向量个数为4-3=1,即它的任一非零解都是它的一个基础解系.另一方面,记向量ξ=2η
1
-(η
2
+η
3
),则 Aξ=A(2η
1
-η
2
-η
3
)=2Aη
1
-Aη
2
-Aη
3
=2b-b-b=0 计算可得ξ=(3,4,5,6)
T
≠0.从而ξ就是方程Ax=0的一个基础解系,根据非齐次线性方程组解的结构知,原方程组的通解为 x=cξ+η
1
=[*](c∈R)
解析
转载请注明原文地址:https://kaotiyun.com/show/L8v4777K
0
考研数学一
相关试题推荐
设A是m×n矩阵,则方程组AX=b有唯一解的充分必要条件是()
若n阶可逆矩阵A的属于特征值λ的特征向量是α,则在下列矩阵中,α不是其特征向量的是()
设向量组α1,α2,α3线性无关,则下列向量组中线性无关的是()
设A是三阶实对称矩阵,若对任意的三维列向量X,有XTAX=0,则().
实对称矩阵A的秩等于r,它有£个正特征值,则它的符号差为()
设A为n阶可逆矩阵,λ为A的特征值,则A*的一个特征值为().
α1,α2,α3,β1,β2均为4维列向量,A=(α1,α2,α3,β1),B=(α3,α1,α2,β2),且|A|=1,|B|=2,则|A+B|=()
已知n维向量组α1,α2,…,αs线性无关,则n维向量组β1,β2,…,βs也线性无关的充分必要条件为
设α为n维非零列向量,E为n阶单位阵,试证:A=E-(2/αTα)ααT为正交矩阵。
随机试题
下列除哪项外均是滑石的主治病证()
地震现场,一工人左腰及下肢被倒塌之砖墙压住,震后6小时救出,4小时送抵医院。诉口渴,尿少,呈暗红色。检查:脉搏120次/min,血压95/70mmHg,左下肢明显肿胀,皮肤有散在淤血斑及水疱,足背动脉搏动较健侧弱,趾端凉,无骨折征
耕地占用税以县级行政区域为单位,人均耕地不超过1亩的地区,每平方米征收()元。
2003年1月,甲、乙、丙共同设立一合伙企业。合伙协议约定:甲以现金人民币5万元出资,乙以房屋作价人民币8万元出资,丙以劳务作价人民币4万元出资;各合伙人按相同比例分配盈利、分担亏损。合伙企业成立后,为扩大经营,于2003年6月向银行贷款人民币5万元,期限
劳务派遣单位的出现是()的必然结果。
俄国画家康定斯基的著作《论艺术中的精神》和《点线面》,奠定了__________的理论基础。另一俄国画家__________创建的至上主义,属于几何抽:象的范畴。奠定了几何抽象主义理论基础和在艺术实践上有重要贡献的是荷兰画家__________创建的”__
结合吉林省实际谈如何解放思想。
运用问答法确定学生是否理解所学知识时,教师要求学生回答问题应()。
在批评心理学中,人们把批评的内容夹在两个表扬之中从而使受批评者愉快地接受批评的现象,称之为三明治效应。根据以上定义,下列做法运用了三明治效应的是()。
在Windows命令行窗口中,运行(65)命令后得到如下图所示的结果,该命令通常用以(66)。
最新回复
(
0
)