首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问t为何值时,向量组α1,α2,α3线性无关? (2)当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α3表示为α1和
设α1=(1,1,1),α2=(1,2,3),α3=(1,3,t). (1)问t为何值时,向量组α1,α2,α3线性无关? (2)当t为何值时,向量组α1,α2,α3线性相关? (3)当α1,α2,α3线性相关时,将α3表示为α1和
admin
2016-06-30
82
问题
设α
1
=(1,1,1),α
2
=(1,2,3),α
3
=(1,3,t).
(1)问t为何值时,向量组α
1
,α
2
,α
3
线性无关?
(2)当t为何值时,向量组α
1
,α
2
,α
3
线性相关?
(3)当α
1
,α
2
,α
3
线性相关时,将α
3
表示为α
1
和α
2
的线性组合.
选项
答案
由行列式|(α
1
α
2
α
3
)
T
|=t-5,知当t≠5时,α
1
,α
2
,α
3
线性无关,当t=5时,α
1
,α
2
,α
3
线性相关.当t=5时,由解方程组χ
1
α
1
+χ
2
α
2
=α
3
,得α
3
=-α
1
+2α
2
.
解析
转载请注明原文地址:https://kaotiyun.com/show/L9t4777K
0
考研数学二
相关试题推荐
设f(x)在[0,+∞)内二阶可导,f(0)=-2,f′(0)=1.f″(x)≥0.证明:f(x)=0在(0,+∞)内有且仅有一个根.
设f(x)二阶可导,且f″(x)>0.证明:当x≠0时,f(x)>x.
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,且f′+(a)>0.证明:存在ξ∈(a,b),使得f″(ξ)<0.
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f(1/2)=1,f(1)=0.证明:(1)存在η∈(1/2,1),使得f(η)=η;(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f′(ξ)-k[f(ξ)-ξ]=1.
设f(x)在[0,2]上连续,且f(0)=0,f(1)=1.证明:(1)存在c∈(0,1),使得f(c)=1-2c;(2)存在ξ∈[0,2],使得2f(0)+f(1)+3f(2)=6f(ξ).
设f(x)是二阶常系数非齐次线性微分方程y″+py′+qy=sin2x+2ex的满足初始条件f(0)=f′(0)=0的特解,则当x→0时,().
设总体X在区间(0,θ)内服从均匀分布,X1,X2,X3是来自总体的简单随机样本.证明:都是参数θ的无偏估计量,试比较其有效性.
若(X,Y)服从二维正态分布,则:①X,Y一定相互独立;②若ρxy=0,则X,Y一定相互独立;③X和Y都服从一维正态分布;④X,Y的任意线性组合服从一维正态分布。上述几种说法中正确的是().
设随机变量X与Y的相关系数为1/3,且E(X)=0,E(Y)=1,E(X2)=4,E(Y2)=10,则E[(X+Y)2]________.
当a取下列哪个值时,函数f(x)=2x3-9x2+12x-a恰有两个不同的零点________。
随机试题
货币供给
初步诊断考虑病人还应查
该租赁合同的性质为()。若本案中双方未约定租赁期限,甲、乙双方又无法就租赁期限协议补充,下列关于合同解除的说法正确的是()。
城市体育中心的布局要充分考虑与城市道路交通系统的相互关系,一般而言,必须与下列哪个等级的道路相连接?
在通信网中属于业务节点的主要功能有()。
社会主义市场经济是市场经济与()的结合。
被称为当今世界第一资源的是:
我国是统一的多民族国家。下列关于我国国家结构形式的表述哪些是正确的?()
最初主张S--R联结存在意识中介的心理学家或心理学流派是
教育的根本目的是()
最新回复
(
0
)