首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
admin
2018-12-21
32
问题
设f(x)在闭区间[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
e
x
f(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ
1
与ξ
2
,使f(ξ
1
)=0,f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,有F
’
(x)=f(x),F(0)=0,F(1)=0,则0=∫
0
1
e
x
f(x)dx=∫
0
1
e
x
d[F(x)]=e
x
F(x)|
0
1
-∫
0
1
F(x)e
x
dx=-∫
0
1
>F(x)e
x
dx, 所以存在ξ∈(0,1),使F(ξ)e
ξ
=0.但e
ξ
≠0,所以F(ξ)=0.由于已有F(0)=0,F(1)=0, 所以根据罗尔定理知,存在ξ
1
∈(0,ξ),ξ
2
(ξ,1),使F
’
(ξ
1
)=0,F
’
(ξ
2
)=0,即f(ξ
1
)=0,f(ξ
2
)=0,其中ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/LAj4777K
0
考研数学二
相关试题推荐
(2010年)计算二重积分I=,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}.
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2014年)一根长为1的细棒位于χ轴的区间[0,1]上,若其线密度ρ(χ)=-χ2+2χ+1,则该细棒的质心坐标=_______.
(2011年)设I=lnsinχdχ,J=lncotχdχ,K=lncosχdχ,则I,J,K的大小关系为【】
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
(2003年)若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
(2013年)设奇函数f(χ)在[-1,1]上具有2阶导数,且f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f′(ξ)=1;(Ⅱ)存在η∈(-1,1),使得f〞(η)+f′(η)=1.
随机试题
在管道的流体流动中,减小阻力可以增加过流流量。下述减少阻力的措施中,错误的是()。
我国最高国家权力机关的职权是()
急性肾炎的严重病例可出现
宇宙万物的共同构成本原是()
男孩,6岁,发热4天,双侧腮腺以耳垂为中心肿大2天。体检:体温38.5℃,神志清楚,双侧腮腺3cm×4cm,有压痛,咽红,腮腺管口有红肿,心、肺无异常,诊断为流行性腮腺炎。该病不常见的并发症是
企业国有资产产权登记的内容主要有( )。
藏餐口味清淡、平和,除了盐和葱蒜外,一般还放辛辣的调料。()
()是肿瘤、结核和炎症的好发部位,膀胱镜检查时应特别注意。
原始群
Hereisthestoryofrubber.FromtheearliesttimeitwascommonknowledgetothePeruvians(秘鲁人)thatwhenacutwasmadeinthe
最新回复
(
0
)