首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
设f(x)在闭区间[0,1]上连续,且∫01f(x)dx=0,∫01exf(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ1与ξ2,使f(ξ1)=0,f(ξ2)=0.
admin
2018-12-21
61
问题
设f(x)在闭区间[0,1]上连续,且∫
0
1
f(x)dx=0,∫
0
1
e
x
f(x)dx=0,证明在开区间(0,1)内存在两个不同的ξ
1
与ξ
2
,使f(ξ
1
)=0,f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,有F
’
(x)=f(x),F(0)=0,F(1)=0,则0=∫
0
1
e
x
f(x)dx=∫
0
1
e
x
d[F(x)]=e
x
F(x)|
0
1
-∫
0
1
F(x)e
x
dx=-∫
0
1
>F(x)e
x
dx, 所以存在ξ∈(0,1),使F(ξ)e
ξ
=0.但e
ξ
≠0,所以F(ξ)=0.由于已有F(0)=0,F(1)=0, 所以根据罗尔定理知,存在ξ
1
∈(0,ξ),ξ
2
(ξ,1),使F
’
(ξ
1
)=0,F
’
(ξ
2
)=0,即f(ξ
1
)=0,f(ξ
2
)=0,其中ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/LAj4777K
0
考研数学二
相关试题推荐
(1994年)如图2.9所示,设曲线方程为y=χ2+,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
(1997年)设在闭区间[a,b]上f(χ)>0,f′(χ)<0,f〞(χ)>0.记S1=∫abf(χ)dχ,S2=f(b)(b-a),S3=[f(a)+f(b)](b-a),则【】
(2010年)计算二重积分I=,其中D={(r,θ)|0≤r≤secθ,0≤θ≤}.
(2014年)设函数f(χ),g(χ)在区间[a,b]上连续,且f(χ)单调增加,0≤g(χ)≤1.证明:(Ⅰ)0≤∫aχg(t)dt≤(χ-a),χ∈[a,b](Ⅱ)f(χ)dχ≤∫abf(χ)dχ.
(2010年)(Ⅰ)比较∫01|lnt|[ln(1+t)]ndt与∫01tn|lnt|dt(n=1,2,…)的大小,说明理由;(Ⅱ)记un=∫01|lnt|[ln(1+t)]ndt(n=1,2,…),求极限un.
(2004年)设A,B为满足AB=O的任意两个非零矩阵,则必有【】
(2013年)设二次型f(χ1,χ2,χ3)=2(a1χ1+a2χ2+a3χ3)+(b1χ1+b2χ2+b3χ3)2,记(Ⅰ)证明二次型f对应的矩阵为2ααT+ββT.(Ⅱ)若α,β正交且均为单位向量,证明f在正交变换下的标准形为
随机试题
摩托车应靠高速公路的右侧路肩上行驶。
交感神经节前纤维直接支配的效应器是
男性,23岁,感冒后发热、咽痛,吞咽时咽痛加剧4天。检查:双侧扁桃体充血、肿大,腺窝口有黄白色脓性分泌物,易拭去。颌下淋巴结肿大、压痛。最可能的诊断是
A.上唇B.下唇C.上颌骨D.下颌骨E.颧骨成釉细胞瘤好发于
“十一五”期间,我国交通信息化建设需要重点突破的领域包括()
位于某市郊区的物流公司占地面积共计20000平方米,其中:办公区占地18000平方米,职工医院占地600平方米,幼儿园占地400平方米,内部绿化区占地1000平方米,2019年发生以下占地情形:(1)经有关部门批准,3月份征用耕地20000平方米
在最短时间内能获得最大刺激、奇特不同的感受,成为旅游者选择旅游目的地进行消费的重要标准。()
A.血清铁蛋白增高,血清铁增高,总铁结合力增高B.血清铁蛋白增高,血清铁增高,总铁结合力降低C.血清铁蛋白增高,血清铁降低,总铁结合力降低D.血清铁蛋白降低,血清铁降低,总铁结合力降低E.血清铁蛋白降低,血清铁降低,总铁结合力增高铁粒幼细胞性贫
【F1】Aleakedstudyexamininggenetically-modifiedcornrevealsthatthelab-madealternativetoorganiccropscontainsastartli
下列关于RPR技术的描述中,错误的是()。
最新回复
(
0
)