首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Aχ=0的通解.
admin
2016-05-30
83
问题
(2005年)已知3阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=
(k为常数),且AB=O,求线性方程组Aχ=0的通解.
选项
答案
由AB=O知矩阵B的每一列都是方程组Aχ=0的解,因此Aχ=0必有非零解,要求其通解是要求出它的基础解系即可.而基础解系所含向量个数等于3-r(A),所以需要先确定A的秩,r(A). 由于AB=O,故r(A)+r(B)≤3,又由a,b,c不全为零,可知r(A)≥1. 当k≠9时,r(B)=2,于是r(A)=1; 当k=9时,r(B)=1,于是r(A)=1或r(A)=2. (1)当k≠9时,因r(A)=1,知Aχ=0的基础解系含2个向量.又由AB=O可得 [*] 由于η
1
=(1,2,3)
T
,η
2
=(3,6,k)
T
线性无关,故η
1
,η
2
为Aχ=0的一个基础解系,于是Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
2
为任意常数. (2)当k=9时,分别就r(A)=2和r(A)=1进行讨论. 如果r(A)=2,则Aχ=0的基础解系由一个向量构成.又因为A[*]=0,所以Aχ=0的通解为χ=c
1
(1,2,3)
T
,其中c
1
为任意常数. 如果r(A)=1,则Aχ=0的基础解系由两个向量构成.又因为A的第一行为(a,b,c)且a,b,c不全为零,所以Aχ=0等价于aχ
1
+bχ
2
+cχ
3
=0.不妨设a≠0,则η
1
=(-b,a,0)
T
,η
2
=(-c,0,a)
T
是Aχ=0的两个线性无关的解,故Aχ=0的通解为 χ=c
1
η
1
+c
2
η
2
,其中c
1
,c
1
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/7K34777K
0
考研数学二
相关试题推荐
交换积分次序,则累次积分∫-10dy∫21-yf(x,y)dx=().
设过点P(1,0,5)的直线与平面π:3x-y+2z-15=0平行,且此直线与直线L:=z相交,求此直线方程.
计算曲线积分I=∮Lydx+zdy+zdz,其中L是球面x2+y2+z2=R2与平面x+z=R的交线,方向由(R,0,0)出发,先经过x>0,y>0部分,再经过x>0,y<0部分回到出发点.
求星形线,a>0在第一象限内的弧L1与Ox轴,Oy轴所围成图形的面积和形心.
设φ1(x),φ2(x),φ3(x)为二阶非齐次线性方程y″+a1(x)y′+a2(x)y=f(x)的三个线性无关解,则该方程的通解为().
二阶常系数非齐次线性微分方程y″-2y′-3y=(2x+1)e-x的特解形式为().
求极限.
(1999年试题,五)求初值问题,的解.
(1999年试题,二)记行列式为f(x),则方程f(x)=0的根的个数为().
(2002年)=_______.
随机试题
干姜、高良姜功效的共同点是()(2010年第35题)
A.虚热B.实热C.脾虚D.血瘀E.肾阳虚
舌下腺囊肿的根治方法是
A、《本草经集注》B、《图经本草》C、《证类本草》D、《神农本草经》E、《本草纲目》首创版印墨线药图的本草是
《建筑法》及相关法规规定,禁止分包单位将其承包的工程再分包,但下列分包中的()例外。
下列不属于风险调整后收益指标的是()。
甲向乙发出要约,乙于3月8日发出承诺信函,3月10日承诺信函寄至甲,但甲的法定代表人当日去赈灾,3月11日才知悉该函内容,遂于3月12日致函告知乙收到承诺,该承诺的生效时间是()。
给定材料【材料1】中国人讲究礼尚往来,逢年过节来往走动,互赠礼物,互祝安康,也是美好情谊的表达。特别是在结婚这样的喜事上更是讲究礼尚往来。操办婚礼无可厚非,但是动辄十几万甚至几十万的彩礼、几百几千的份子钱,亲朋好友连吃多天的婚宴酒席等大
《天朝田亩制度》实际上是起义农民提出的一个以解决土地问题为中心的比较完整的社会改革方案。以下对《天朝田亩制度》表述不正确的是
有以下程序:#includevoidfun(char(*P)[6]){int1;for(i=0;i
最新回复
(
0
)