首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
admin
2019-07-10
39
问题
已知α=[1,1,1]
T
是二次型2x
1
2
+x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
选项
答案
二次型矩阵是 [*] 设α是属于特征值λ
0
的特征向量,即A
1
α=λ
0
α,或 [*] 易解出 λ
0
=3,b=0,a=2. 对于A
1
=[*],由于|A
1
|=0,所以f不是正定二次型. 将a=2,b=0代入方程组,对系数矩阵作初等行变换化为行阶梯形矩阵: [*] 当c=6时,对B进一步用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 则A
2
X=0的一个基础解系含2个解向量: α
1
=[一9,19,一7,1,0]
T
,α
2
=[2,一7,2,0,1]
T
, 其通解为X=k
1
α
1
+k
2
α
2
,k
1
,k
2
为任意常数。 当c≠6即c一6≠0时,矩阵B用初等行变换进一步可化为含最高阶单位矩阵的矩阵: [*] 这时方程组A
2
X=0的基础解系只含一个解向量: [一(3c一10)/14,一(23一2c)/7,0,一(c一8)/7,7]
T
. 为方便计,取 α
3
=[一(3c一10)/2,一(23一2c),0,一(c一8),49]
T
=[5一3c/2,2c一23,0,(8一c),49]
T
. 故当c≠6时,方程组A
2
X=0的通解为k
3
α
3
,其中k
3
为任意常数.
解析
写出二次型矩阵A,由题设条件列出方程易求得a、b和α的特征值λ
0
,然后再将所给齐次方程组的系数矩阵用初等行变换化为含最高阶单位矩阵的矩阵,用基础解系的简便求法即可写出其基础解系及通解.
转载请注明原文地址:https://kaotiyun.com/show/LHJ4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0).证明:存在ξ,η∈(a,b),使得
设一抛物线y=ax2+bx+c过点(0,0)与(1,2),且a<0,确定a,b,c,使得抛物线与x轴所围图形的面积最小.
设A是三阶矩阵,且|A|=4,则
设A,B为n阶矩阵,则下列结论正确的是().
设X,Y为两个随机变量,且D(X)=9,Y=2X+3,则X,Y的相关系数为__________.
设总体X的密度函数为X1,X2,…,Xn为来自总体X的简单随机样本,求参数θ的最大似然估计量.
设α为n维非零列向量,证明:α为矩阵A的特征向量.
设求f(x)的间断点并判断其类型.
(2017年)设函数收敛,则k=()
(2013年)设总体X的概率密度为其中θ为未知参数且大于零,X1,X2,…,Xn为来自总体X的简单随机样本。(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量。
随机试题
沿海“赤潮”是水域中一些浮游生物暴发性增殖引起的水色异常现象,主要成因是近海海水污染和______。
生姜的功效是()防风的功效是()
橙皮苷转变为橙皮查耳酮苷的条件是
2010年6月甲房地产开发企业以出让方式取得某块国有建设用地的使用权,计划兴建一普通商品住宅小区,但由于开发资金不足,到2011年8月才开始动工建设。2011年10月就开始预售,2013年3月完工后又开始进行现房销售,并陆续交付使用给购买人。甲房地产开
有甲乙两宗房地产,报酬率相同。甲房地产的收益年限为50年,单价为3500元/m2,乙房地产收益年限为30年,单价为3000元/m2,那么乙的价格高于甲的价格。()
下列工作内容,属于安全评价中危险、有害因素辨识与分析工作内容的是()。
下列不属于基金管理人内部控制机制的是()。
非法出售已填好金额的增值税专用发票构成( )。
注意事项1.本题本由给定资料与作答要求两部分组成,考试时限为180分钟。其中,阅读给定资料参考时限为50分钟,作答参考时限为130分钟。满分150分。2.请在题本、答题卡指定位置上用黑色字迹的钢笔或签字笔填写自己的姓名和准考证号,并用2B铅笔在准考证号
Thepriceofabitcointopped$900lastweek,anenormoussurgeinvaluethatarrivedamidstCongressionalhearingswheretopU.
最新回复
(
0
)