首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
admin
2019-07-10
53
问题
已知α=[1,1,1]
T
是二次型2x
1
2
+x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
选项
答案
二次型矩阵是 [*] 设α是属于特征值λ
0
的特征向量,即A
1
α=λ
0
α,或 [*] 易解出 λ
0
=3,b=0,a=2. 对于A
1
=[*],由于|A
1
|=0,所以f不是正定二次型. 将a=2,b=0代入方程组,对系数矩阵作初等行变换化为行阶梯形矩阵: [*] 当c=6时,对B进一步用初等行变换化为含最高阶单位矩阵的矩阵,得到 [*] 则A
2
X=0的一个基础解系含2个解向量: α
1
=[一9,19,一7,1,0]
T
,α
2
=[2,一7,2,0,1]
T
, 其通解为X=k
1
α
1
+k
2
α
2
,k
1
,k
2
为任意常数。 当c≠6即c一6≠0时,矩阵B用初等行变换进一步可化为含最高阶单位矩阵的矩阵: [*] 这时方程组A
2
X=0的基础解系只含一个解向量: [一(3c一10)/14,一(23一2c)/7,0,一(c一8)/7,7]
T
. 为方便计,取 α
3
=[一(3c一10)/2,一(23一2c),0,一(c一8),49]
T
=[5一3c/2,2c一23,0,(8一c),49]
T
. 故当c≠6时,方程组A
2
X=0的通解为k
3
α
3
,其中k
3
为任意常数.
解析
写出二次型矩阵A,由题设条件列出方程易求得a、b和α的特征值λ
0
,然后再将所给齐次方程组的系数矩阵用初等行变换化为含最高阶单位矩阵的矩阵,用基础解系的简便求法即可写出其基础解系及通解.
转载请注明原文地址:https://kaotiyun.com/show/LHJ4777K
0
考研数学三
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得
设求Am.
设矩阵有一个特征值为3.求可逆矩阵P,使得(AP)T(AP)为对角矩阵.
设D是由点O(0,0),A(1,2)及B(2,1)为顶点构成的三角形区域,计算
改变积分次序并计算
设φ1(x),φ2(x)为一阶非齐次线性微分方程y′+P(x)y=Q(x)的两个线性无关的特解,则该方程的通解为().
设某种零件的长度L~N(18,4),从一大批这种零件中随机取出10件,求这10件中长度在16~22之间的零件数X的概率分布、数学期望和方差.
一台设备由三大部件构成,在设备运转过程中各部件需要调整的概率分别为0.1,0.2,0.3,假设各部件的状态相互独立,以X表示同时需要调整的部件数,求E(X),D(X).
设随机变量X方差为2,则根据切比雪夫不等式有估计P{|X—E(X)|≥2)≤____________.
设甲袋中有2个白球,乙袋中有2个红球,每次从各袋中任取一球,交换后放入另一袋,这样交换3次,求甲袋中白球数X的数学期望.
随机试题
[2014]ABC会计师事务所的A注册会计师担任多家被审计单位2013年度财务报表审计的项目合伙人,遇到下列事项:(3)丙公司大部分采购和销售交易为关联方交易,管理层在2013年度财务报表附注中披露关联方交易价格公允,由于缺乏公开市场数据,A注册
边缘层
A.肝经B.肾经C.脾经D.心经
阿米巴痢疾肠道溃疡的特点是
可以有效防止不宜晾的中药的生虫、发霉的低温贮存温度是()
下列各项中,不属于比较优势原则应用的有()。
下列改革措施中,不属于北魏孝文帝时期的是
视图是【】的表,其内容是根据查询定义的。
Youwillhearfivedifferentbusinesspeopletalkingaboutcorporations.Foreachextracttherearetwotasks.ForTaskOne,cho
Whenyoucallthepolice,thepolicedispatcherhastolocatethecarnearestyouthatisfreetorespond.Thismeansthedispat
最新回复
(
0
)