首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
admin
2021-02-25
43
问题
设向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示为(b
1
,b
2
,…,b
r
)=(a
1
,a
2
,…,a
s
)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
选项
答案
记A=(a
1
,a
2
,…,a
s
),B=(b
1
,b
2
,…,b
r
),则有B=AK,必要性([*]):设向量组B线性无关,知R(B)=r,又由B=AK,知R(K)≥R(B)=r,而R(K)≤r,于是R(K)=r.充分性([*]):设R(K)=r.要证向量组B线性无关,只要证R(B)=r,即证Bx=0只有零解即可.若Bx=0,即AKx=0,又因R(A)=s,则Kx=0,又因R(K)=r,则有x=0,即方程组Bx=0只有零解,于是R(B)=r,即向量组B线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/LK84777K
0
考研数学二
相关试题推荐
设函数y=y(x)由参数方程确定,求y=y(x)的极值和曲线y=y(x)的凹凸区间及拐点.
(2012年试题,三)已知函数f(x)满足方程f’’(x)+f’(x)一2f(x)=0及f’(x)+f(x)=2ex求f(x)的表达式;
计算二重积分,其中D={(r,θ)|0≤r≤secθ,}.
(2009年)设y=y(χ)在区间(-π,π)内过点()的光滑曲线.当-π<χ<0时,曲线上任一点处的法线都过原点;当0≤χ<π时,函数y(χ)满足y〞+y+χ=0.求函数y(χ)的表达式.
设矩阵A的伴随矩阵A*=,则A=________。
微分方程xy’+2y=sinx满足条件y|x=π=的特解为_________。
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________。
设平面区域D由x=0,y=0,x+y=[sin(x+y)]3dxdy,则I1,I2,I3的大小顺序为()
设f(χ)在(-∞,+∞)上连续,f′(0)=1,且对任意的χ,y∈(-∞,+∞)有f(χ+y)=f(χ)f(y),求f(χ).
随机试题
与甲氨蝶呤有高度亲和力的酶是
关于药历的阐述,错误的是
县人民法院在庭前审查中、将案件退回补充侦查的做法是否正确?一审法院重审该案时,存在哪些诉讼程序上的错误?
一定量的理想气体,在温度不变的条件下,当压强降低时,分子的平均碰撞次数和平均自由程的变化情况是( )。
下列不属于行政处罚的适用应遵循的三项基本原则的是()。
我国公司法规定,股份有限公司公司监事会会议每()至少召开一次。
国家预算怎样发挥宏观调控作用?
影片《定军山》是()。[2011年真题]
下列叙述中,不属于软件需求规格说明书的作用的是______。
WhatisJimdoing?
最新回复
(
0
)