首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。 是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=一2,且α1=(1,一1,1)。 是A的属于λ1的一个特征向量.记B=A5一4A3+E,其中E为3阶单位矩阵. 验证α1是矩阵B的特征向量,并求B的全部特征值与特征向量;
admin
2016-01-11
72
问题
设3阶实对称矩阵A的特征值λ
1
=1,λ
2
=2,λ
3
=一2,且α
1
=(1,一1,1)。
是A的属于λ
1
的一个特征向量.记B=A
5
一4A
3
+E,其中E为3阶单位矩阵.
验证α
1
是矩阵B的特征向量,并求B的全部特征值与特征向量;
选项
答案
由Aα
1
=λ
1
α
1
知Bα
1
=(A
5
一4A
3
+E)α
1
=(λ
1
5
一4λ
1
3
+1)α
1
=一2α
1
,故α
1
是矩阵B的属于特征值一2的特征向量. 类似,矩阵B的其他两个特征值为λ
i
5
一4λ
i
3
+1(i=2,3). 所以B的全部特征值为一2,1,1. 因为A是实对称矩阵,故B也是实对称的.若设(x
1
,x
2
,x
3
)
T
为B的属于特征值1的特征向量,则必有(x
1
,x
2
,x
3
)α
1
=0,即(x
1
,x
2
,x
3
)
T
与α
1
正交.所以有x
1
—x
2
+x
3
=0,解此方程得其基础解系为α
2
=(1,1,0)
T
,α
3
=(一1,0,1)
T
. 故矩阵B的属于特征值一2的全部特征向量为k
1
α
1
(k
1
,为不等于零的任意常数); 属于特征值1的全部特征向量为k
2
α
2
+k
3
α
3
(k
2
,k
3
是不全为零的任意常数).
解析
若λ是n阶矩阵A的特征值f(x)是x的m次多项式,则f(λ)是f(a)的特征值,且矩阵A的属于λ的特征向量α,也是f(a)的属于f(λ)的特征向量.这是矩阵的重要性质.所以第(1)问就是以具体的矩阵来验证上述结论.第(2)问则是常见的由矩阵B的特征值、特征向量求出B.
转载请注明原文地址:https://kaotiyun.com/show/Le34777K
0
考研数学二
相关试题推荐
星形线(0>0)绕Ox轴旋转所得旋转曲面的面积为__________.
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
设X1,X2,…,Xn为总体X~B(N,p)(0<P<1)的简单随机样本,则P的最大似然估计量=________.
设随机变量X与Y相互独立,P{X=-1}=P{X=1}=,Y~N(0,1),则概率P{XY≤E(XY)}=________.
设随机变量X服从[0,2]上的均匀分布,Y服从参数为2的指数分布,且X与Y相互独立,令Z=X+Y,求Z的概率密度fz(z);
设随机变量X与Y相互独立,X~N(0,σ2)(σ>0).且Y的分布律为P{Y=-1}=P{Y=1}=1/2,记Z=XY.设Z1,Z2,…,Zn为来自总体Z的简单随机样本,求σ2的最大似然估计量
设D是由直线x=—1,y=1与曲线y=x3所围成的平面区域,D1是D在第一象限的部分,则
求由半球面与旋转抛物面x2+y2=4z所围成的立体的全表面积.
设曲线L为球面x2+y2+z2=1与平面z+y+z=0的交线,则∮L(xy+yz+zx)ds=().
设∫F’(x)dx=∫G’(x)dx,则下列结论中错误的是________。
随机试题
用Excel可以创建各类图表。为了描述特定时间内各个项之间的差别情况,对各项进行比较,应该选择()。
RC串联的交流电路中,电容上的电压相位滞后电流相位。()
男性,30岁,突感上腹部剧痛,检查:血压130/80mmHg,脉搏110次/分,板样腹,肠鸣音消失。血红蛋白120g/L,血白细胞数8.0×109/L。以下提示病情危险的是
井筒施工根据()的不同,分为普通凿井法与特殊凿井法。
进境展览品在展览期间被人购买的()。“ATA单证册”在我国的适用范围包括()。
投资基金按收益凭证是否可赎回分为公司型基金和契约型基金。()
岸边集装箱装卸桥的两个重要工作性能参数是()。
改革开放三十年以来,我国社会福利行政体系动作方式不断发展,正在形成政府与社会合作的社会福利行政模式。这一模式的特点有()。
()被称为“西方油画之父”。
Therecordofthepasthalfcenturyhasestablished,Ithink,thetwogeneralprinciplesabouthumandisease.First,itisneces
最新回复
(
0
)