首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵A=B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
设矩阵A=B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
admin
2017-01-21
62
问题
设矩阵A=
B=P
—1
A
*
P,求B+2E的特征值与特征向量,其中A
*
为A的伴随矩阵,E为三阶单位矩阵。
选项
答案
设A的特征值为λ,对应特征向量为η,则有Aη=λη。由于|A|=7≠0,所以λ≠0。 又因A
*
A=|A|E,故有A
*
η=[*] 于是有 B(P
—1
η)=P
—1
A+P(P
—1
η)=[*](P
—1
η), (B+ 2E)P
—1
η=[*]P
—1
η。 因此,[*]+2为B+2E的特征值,对应的特征向量为P
—1
η。 由于 |λE—A|=[*]=(λ一1)
2
(λ一7), 故A的特征值为λ
1
=λ
2
=1,λ
3
=7。 当λ
1
=λ
2
=1时,对应的线性无关的两个特征向量可取为 η
1
=[*] 当λ
3
=7时,对应的一个特征向量可取为 η
3
=[*] 由P
-1
=[*] 因此,B+2E的三个特征值分别为9,9,3。 对应于特征值9的全部特征向量为 k
1
P
—1
,η
1
+k
2
P
—1
η
2
=[*] 其中k
1
,k
2
是不全为零的任意常数; 对应于特征值3的全部特征向量为k
3
P
—1
η
3
=[*]其中k
3
是不为零的任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/LmH4777K
0
考研数学三
相关试题推荐
假设一大型设备在任何长为t的时间内发生故障的次数N(t)服从参数为λt的泊松分布.(1)求相继两次故障之间时间间隔T的概率分布;(2)求在设备已经无故障工作8小时的情形下,再无故障工作8小时的概率Q。
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件αTB=0,记n阶矩阵A=αβT,求:(I)A2;(II)矩阵A的特征值和特征向量.
设某产品的成本函数为C=Aq2+bq+c,需求函数为其中C为成本,q为需求量(即产量),p为单价,a,b,c,d,e都是正的常数,且d>b,求:(I)利润最大时的产量及最大利润;(Ⅱ)需求对价格的弹性;(Ⅲ)需求对价格弹性的绝对值为1时的产量.
(I)因为fˊ(x)简单,先求fˊ(x)的展开式,然后逐项积分得f(x)的展开式.[*]
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’(x)单调减少;且f(1)=f’(1)=1,则
设二次型f(x1,x2,x3)=xTAx的秩为1,A的各行元素之和为3,则f在正交变换x=Qy下的标准形为_________.
设向量组I:α1,α2,...,αr可由向量组Ⅱ:β1,β2,...,βs线性表示.下列命题正确的是
求点(0,a)到曲线x2=4y的最近距离.
设函数y=y(x)往(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.求变换后的微分方程满足初始条件y(0)=0,y’(0)=3/2的解.
随机试题
不属于护理质量控制内容的是
急性呼吸衰竭病人的护理措施不包括
土地估价师接受继续教育时间五年累计不得少于()学时。
鸦片浸膏(生物碱的含量为49%)
新股申购类理财产品收益率的影响因素是()。
幼儿无意想象的特点有()
基本:原理
商业银行应该依法保护存款人权益,下列行为中,没有做到依法保护存款人合法权益的是()。
香港“廉政公署”自1974年成立以来,强力肃贪,共调查2200多件贪污、行贿案件,检控涉案不法政府官员1355人。似香港弹丸之地,调查案件如此之多,涉及人员如此之众,但并未阻碍香港的经济发展与繁荣。这句话支持了一个论点,即( )。
下列方法中能完成主类实例初始化工作的是()。
最新回复
(
0
)