首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的解是________。
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的解是________。
admin
2020-03-10
39
问题
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的解是________。
选项
答案
y=x(1-e
x
)+2
解析
由y=(C
1
+C
2
x)e
x
是齐次方程的通解可知,r=1是齐次方程对应的特征方程的二重根,则特征方程为(r-1)
2
=0,即r
2
-2r+1=0。则a=-2,b=1。
设非齐次方程的一个特解为y
*
=Ax+B,将之代入原方程得A=1,B=2,非齐次方程的通解为
y=(C
1
+C
2
x)e
x
+x+2。
由y(0)=2,y’(0)=0得
则C
1
=0,C
2
=-1。
因此满足条件的解为y=-xe
x
+x+2=x(1-e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/M4S4777K
0
考研数学一
相关试题推荐
[*]
试证(x+y)ln≤xlnx+ylny。
已知λ1,λ2,λ3是A的特征值,α1,α2,α3是相应的特征向量且线性无关。证明:如α1+α2+α3仍是A的特征向量,则λ1=λ2=λ3。
设α1=(1,1,1,3)T,α2=(一1,一3,5,1)T,α3=(3,2,一1,p+2)T,α4=(一2,一6,10,p)T.p为什么数时,α1,α2,α3,α4线性相关?此时求r(α1,α2,α3,α4)和写出一个最大线性无关组.
(1999年试题,四)求.其中a,b为正的常数,L为从点A(2a,0)沿曲线到原点O(0,0)的弧.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(I)的逆命题不成立;(Ⅲ)当A,B为实对称矩阵时,证明(Ⅰ)的逆命题成立。
设f(x)为已知连续函数,,其中s>0,t>0,则I的值
已知A,B,C都是行列式值为2的3阶矩阵,则D==________.
设f(x)是连续函数,且则f(7)=________.
当x→0时,x—sinxcos2x~cxk,则c=________,k=_______.
随机试题
某医生因技术过失致患者组织器官损伤造成功能障碍。在调查中发现其涂改、伪造病案和有关资料,给调查带来极大的困难,情节较为严重。其所在单位采取的措施的是:
光纤通信时传送信号是利用光信号在传输过程中形成()
求已给微分方程满足初始条件的特解
心力衰竭早期代偿机制除外
患者,女性,18岁。因急性阑尾炎需急症手术。患者表现十分害怕,焦虑不安,食欲差,失眠。急诊护士应首先考虑给予
下列施工项目中,属于经批准可以采用邀请招标方式发包的工程项目有()。
以下音乐家曾生活在维也纳的有()。
毛泽东指出:“这个辩证法的宇宙观,主要的就是教导人们要善于去观察和分析各种事物的矛盾的运动,并根据这种分析,指出解决矛盾的方法。”这句话说明()。
某单位利用业余时间举行了3次义务劳动,总计有112人次参加。在参加义务劳动的人中,只参加1次、参加2次和3次全部参加的人数之比为5:4:1。问该单位共有多少人参加了义务劳动?()
设f(x)=求I=∫0xtf(x一t)dt。
最新回复
(
0
)