首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的解是________。
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C1+C2x)ex,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的解是________。
admin
2020-03-10
55
问题
若二阶常系数齐次线性微分方程y’’+ay’+by=0的通解为y=(C
1
+C
2
x)e
x
,则非齐次方程y’’+ay’+by=x满足条件y(0)=2,y’(0)=0的解是________。
选项
答案
y=x(1-e
x
)+2
解析
由y=(C
1
+C
2
x)e
x
是齐次方程的通解可知,r=1是齐次方程对应的特征方程的二重根,则特征方程为(r-1)
2
=0,即r
2
-2r+1=0。则a=-2,b=1。
设非齐次方程的一个特解为y
*
=Ax+B,将之代入原方程得A=1,B=2,非齐次方程的通解为
y=(C
1
+C
2
x)e
x
+x+2。
由y(0)=2,y’(0)=0得
则C
1
=0,C
2
=-1。
因此满足条件的解为y=-xe
x
+x+2=x(1-e
x
)+2。
转载请注明原文地址:https://kaotiyun.com/show/M4S4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,f()=1,f(1)=0.证明:对任意的k∈(一∞,+∞),存在ξ∈(0,η),使得f’(ξ)一k[f(ξ)一ξ]=1.
在椭圆=1的第一象限部分上求一点P,使该点处的切线,椭圆及两坐标轴所围图形的面积为最小.
设3阶矩阵A的逆阵为A—1=A*为A的伴随矩阵,求(A*)—1.
(2012年)已知L是第一象限中从点(0,0)沿圆周x2+y2=2x到点(2,0),再沿圆周x2+y2=4到点(0,2)的曲线段,计算曲线积分
(11年)设函数z=f(xy,yg(x)),其中函数f具有二阶连续偏导数,函数g(x)可导且在x=1处取得极值g(1)=1.求
(2000年)设有一半径为R的球体,P0是此球的表面上的一个定点,球体上任一点的密度与该点到P0距离的平方成正比(比例常数k>0),求球体的重心位置。
设随机变量X1,X2,…,Xn,…相互独立且都在(一1,1)上服从均匀分布,则=__________。(结果用标准正态分布函数Φ(x)表示)。
一本m页的书,共有r个错字,且每个错字等可能地出现在每一页上,试求在给定的一页上至少有两个错字的概率。
[2009年]若三维列向量α,β满足αTβ=2,其中αT为α的转置,则矩阵βαT的非零特征值为______.
[2002年]设有一小山,取它的底面所在的平面为xOy坐标面,其底部所占的区域为D={(x,y)|x2+y2一xy≤75},小山的高度函数为h(x,y)=75一x2一y2+xy.设M(x0,y0)为区域D上一点,问h(x,y)在该点沿平面上什么方向
随机试题
A、It’sinterestingandeasy.B、It’smeaningfulbutboring.C、It’sverystressfulandboring.D、It’ssatisfyingbutneedslong-ti
企业在设计产品成本核算业务会计制度时,必须设计成本核算对象。在下列各项中,可以作为成本核算对象的有()
简述如何正确对待竞争。
A.升高B.降低C.先高后低D.先低后高低血容量休克时患者的心率变化是
提供社区初级保健的主要机构是
人们根据一定医德标准,通过社会舆论和内心信念,对医务人员或医疗卫生部门的行为和活动所做的善恶判断,称为
管道用支架的种类中,限制管道径向位移,但允许轴向位移的支架是()。
我国某品牌智能手机通过国际市场采购所有零配件,首创了发烧友参与开发改进的模式。该手机的最新产品无论是外观款式还是硬件配置均改变了传统设计思路。据此完成关于该品牌手机产销模式的叙述,正确的是()。
封面:正文:书籍
A、Hedidn’tlikephysicsanymore.B、Hiseyesightwastoopoor.C、Physicswastoohardforhim.D、Hehadtoworktosupporthims
最新回复
(
0
)