首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2014年] 设∑为曲面z=x2+y2(x≤1)的上侧,计算曲面积分 I=(x一1)3dydz+(y一1)2dzdx+(z一1)dxdy.
[2014年] 设∑为曲面z=x2+y2(x≤1)的上侧,计算曲面积分 I=(x一1)3dydz+(y一1)2dzdx+(z一1)dxdy.
admin
2019-04-08
46
问题
[2014年] 设∑为曲面z=x
2
+y
2
(x≤1)的上侧,计算曲面积分
I=
(x一1)
3
dydz+(y一1)
2
dzdx+(z一1)dxdy.
选项
答案
因∑非闭,补∑
1
:平面z=1被z=x
2
+y
2
所截部分下侧,得到 [*] 因∑
1
:z=1(x
2
+y
2
≤1)取下侧,∑和∑
1
围成的几何体为Ω,由高斯公式得到 [*] ∑和∑
1
所围立体Ω关于yOz平面及zOx平面对称,故[*],而 [*] 因补加的曲面∑
1
为平行于坐标面xOy的平面,且z=1为常数,故dzdx=0,dzdy=0.于是 [*] 故 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/BJ04777K
0
考研数学一
相关试题推荐
(2013年)设数列(an}满足条件:a0=3,a1=1,an-2一n(n一1)an=0(n≥2)。S(x)是幂级数的和函数。(I)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
(1998年)求直线L:在平面∏:x—y+2z-1=0上的投影直线L0的方程,并求L0绕y轴旋转一周所成曲面的方程。
(2005年)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1。证明:(I)存在ξ∈(0,1),使得f(ξ)=1一ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1。
(2008年)设f(x)是连续函数。(I)利用定义证明函数可导,且F′(x)=f(x);(Ⅱ)当f(x)是以2为周期的周期函数时,证明函数也是以2为周期的周期函数。
(2017年)设函数f(u,v)具有二阶连续偏导数,y=f(ex,cosx),求
已知四阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为四维列向量,其中α2,α3,α4线性无关,α1=2α2一α3。若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
设直线L:及π:x-y+2z-1=0.求L绕y轴旋转一周所成曲面的方程.
[2012年]证明
[2012年]设A,B,C是随机事件,A与C互不相容,P(AB)=1/2,P(C)=1/3,=______.
[2012年]设A为三阶矩阵,P为三阶可逆矩阵,且P-1AP=.若P=[α1,α2,α3],Q=[α1+α2,α2,α3],则Q-1AQ=().[img][/img]
随机试题
根据《法律援助条例》规定,请求支付劳动报酬的,向()的法律援助机构提出申请。
治疗湿热黄疽可选用
痢疾初起治疗当忌
肢端肥大症患者血钙较高时常提示
实验室测定血清总钙的参考方法是
下列关于磁共振图像矩阵的叙述,正确的是
某公司去年有员工830人,今年男员工人数比去年减少6%,女员工人数比去年增加5%,员工总数比去年增加3人,问今年男员工有多少人?()
下面是某求助者MMPI-2的测验结果24项版本的HAMD量表,其因子数量为()。(A)2(B)3(C)5(D)7
案例:某学校初二年级的数学备课组针对“勾股定理”一课的教学进行讨论,拟定了如下的教学目标:①掌握勾股定理的内容,体会数形结合思想;②学会运用勾股定理。为了落实上述教学目标,甲、乙两位教师对此给出了不同的教学思路。
纯粹从阅读角度看,今天我们的阅读数量是很可观的。我们每天看微博,看新闻客户端,看微信朋友圈,看QQ日志……这最终都能累积为每天的阅读量。碎片化的阅读,确实便利了信息获取,但若是从人文涵养的角度看,碎片化本身意味着不全面,再加上网络阅读的简化,人们由此实现的
最新回复
(
0
)