首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设0<a<b,证明不等式
设0<a<b,证明不等式
admin
2019-03-21
60
问题
设0<a<b,证明不等式
选项
答案
先证右边不等式,即[*], 设[*], 因为[*], 故当x>a时,ψ(x)单调减少,又ψ(a)=0,所以,当x>a时,ψ(x)<ψ(a)=0,即 [*], 从而当b>a>0时,有 [*], 再证左边不等式,即[*]。 方法一 设函数f(x)=lnx(x>a>0),由拉格朗日中值定理知至少存在一点ξ∈ (a,b),使 [*], 由于0<a<ξ<b,故 [*], 从而[*]。 方法二 设f(x)=(x
2
+a
2
)(lnx—Ina)-2a(x-a) (x>a>0), 因为[*], 故当x>a时,f(x)单调增加,又f(a)=0,所以当x>a时, f(x)>f(a)=0,即(x
2
+a
2
)(lnx—lna)-2a(x-a)>0. 从而当b>a>>时,有(a
2
+b
2
)(lnb—lna)-2a(b-a)>0,即[*]。
解析
[分析] 将原不等式变形,作辅助函数,再用函数不等式的证明方法证明变形的不等式.
[评注] 不等式的证明是考研的重点之一,不等式证明的主要方法有:微分中值定理、单调性、极值与最值及凹凸性和泰勒公式.
转载请注明原文地址:https://kaotiyun.com/show/MGV4777K
0
考研数学二
相关试题推荐
讨论函数f(x)=在x=0处的连续性与可导性.
判断下列结论是否正确,并证明你的判断.(Ⅰ)若xn<yn(n>N),且存在极限,则A<B;(Ⅱ)设f(x)在(a,b)有定义,又c∈(a,b)使得极限=A,则f(x)在(a,b)有界;(Ⅲ)若=∞,则δ>0使得当0<|x-a|<δ时有界.
求下列函数的导数y’:
已知函数f(x,y,z)=x3y2z及方程x+y+z-3+e-3=e-(x+y+z),(*)(Ⅰ)如果x=x(y,z)是由方程(*)确定的隐函数满足x(1,1)=1,又u=f(x(y,z),y,z),求;(Ⅱ)如果z=z(x,
求证:曲率半径为常数a的曲线是圆.
求下列方程的通解:(Ⅰ)(x-2)dy=[y+2(x-2)3]dx;(Ⅱ)y2dx=(x+y2)dy;(Ⅲ)(3y-7x)dx+(7y-3x)dy=0.
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
在[0,+∞)上给定曲线y=y(x)>0,y(0)=2,y(x)有连续导数.已知x>0,[0,x]上一段绕x轴旋转所得侧面积等于该段旋转体的体积.求曲线y=y(x)的方程.
求由曲线x2=ay与y2=ax(a>0)所围平面图形的质心(形心)(如图3.34).
随机试题
既治风湿痹症,又治跌打损伤,骨折的是
A.大便臭秽B.大便酸臭C.大便恶臭D.大便无明显臭味E.大便腥
中国政府于2012年10月9日发表了《中国的司法改革》白皮书。这是我国首次就司法改革问题发布白皮书。《中国的司法改革》全面客观地介绍了司法改革的基本情况和主要成就。关于我国司法改革提高司法效率和保证司法公正的具体措施的认识,下列说法中正确的是哪一或者哪些选
对于黏性土料,当含水量偏低时,应考虑()措施。
下列()货物免征或减征关税。
债券买断式回购的期限由交易双方确定,但最长不得超过365天。()
请介绍一下你的背景,谈谈为什么报考公务员。
下列关于数据库设计的叙述中,错误的是
DearManager,Afteraseriousconsideration,IhavedefinitelydecidedtoresignfromthedepartmenteffectivelyonSeptembe
Forsometimepastithasbeenwidelyacceptedthatbabies—andothercreatures—learntodothingsbecausecertainactsleadto
最新回复
(
0
)