首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求矩阵A的特征值;
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3. 求矩阵A的特征值;
admin
2016-03-05
37
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
.
求矩阵A的特征值;
选项
答案
由已知可得[*]由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
一1
AP
1
=B,因此矩阵A与B相似,则[*]矩阵B的特征值是1,1,4,由相似矩阵的性质,故矩阵A的特征值为1,1,4.
解析
转载请注明原文地址:https://kaotiyun.com/show/Ma34777K
0
考研数学二
相关试题推荐
设3阶实对称矩阵A=(a1,a2,a3)有二重特征值λ1=λ2=2,且满足a1-2a3=(-3,0,6)T.k为何值时,A*+kE是正定矩阵?
差分方程2yi+1-yi=3(1/2)i的通解为________.
设f(x)在[0,a](a>0)上可导,f(0)=0,f(a)=a2,且当x∈(0,a)时,f(x)≠ax,证明:存在一点ξ∈(0,a),使得f’(ξ)>a.
已知一抛物线过Ox轴上两点A(1,0)、B(3,0),记0≤x≤1时,抛物线与Ox轴、Oy轴围成的平面图形为S1,在1≤x≤3上抛物线与Ox轴围成的平面图形为S2.求S1与S2绕Ox轴旋转一周所产生的两个旋转体的体积之比;
设y=f(x)在x≥0上有严格单调递增的连续导函数,且f(0)=0,它的反函数为x=g(y),证明:不等式∫0af(x)dx+∫0bdy≥ab.
设函数f(x)在[0,1]上连续,且∫01f(x)dx=0,∫01xf(x)dx=1,证明:(1)存在x1∈[0,1],使得|f(x1)|>4;(2)存在x2∈[0,1],使得|f(x2)|=4.
证明方程分别有包含于(1,2),(2,3)内的两个实根.
n维向量α=1/2.0,…,0,1/2)T,A=E—4ααT,β=(1,1,…,I)T,则Aβ的长度为
若线性方程组有解,则常数α1,α2,α3,α4应满足条件_____.
随机试题
机体体液、渗透压及酸碱平衡的调节机制是什么?
在对瘿病肿块扪诊时,除对其肿块位置、数目、光滑度、活动度、界限进行重点检查外,还应注意的是
患者,女,25岁。口舌生疮,心烦失眠,小便黄赤,尿道灼热涩痛,口渴,舌红无苔,脉数。其病位在
社会工作者老李为10岁的困境儿童小蕾提供服务。老李评估发现,小蕾母亲因残疾无法正常工作,父亲因抢劫刚刚入狱服刑,尽管小蕾家领取最低生活保障金后能维持基本生活,但小蕾觉得会被社区其他孩子看不起,一直郁郁寡欢。下列老李的服务中,体现促进小蕾与社会环境相互适应功
平安末期,僧人荣西入宋,将()传到日本。
一项产品要成功地占领市场,必须既有合格的质量,又有必要的包装;一项产品,不具备足够的技术投入,合格的质量和必要的包装难以两全;而只有足够的资金投入,才能保证足够的技术投入。以下哪项结论可以从题干的断定中推出?Ⅰ.一项成功占领市场的产品,其中不可能
SuspiciousoftoopowerfulaPresident,Americansnonethelessare____whenaPresidentdoesnotactdecisively.
Thethreeelementsofthefederalgovernmentincludethefollowingexcept______.
Whohasn’twantedtomasternotjusttwolanguagesbut10?TakeGiuseppeMezzofanti,a19th-centurypriestwhowassaidtobe(1)
Overthehistoryoftheearth,millionsofanimalandplantspecieshavedisappeared.Mostofthesespeciesdisappeared,orbeca
最新回复
(
0
)