首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛,并求其极限值.
设a1=1,当n≥1时,an+1=,证明:数列{an}收敛,并求其极限值.
admin
2020-03-16
97
问题
设a
1
=1,当n≥1时,a
n+1
=
,证明:数列{a
n
}收敛,并求其极限值.
选项
答案
设f(x)=[*]<0,所以f(x)在[0,+∞)上单调减少. 由于a
1
=1,a
2
=[*],可知a
1
>a
3
>a
2
,而f(x)在[0,+∞)上单调减少,所以有f(a
1
)<f(a
3
)<f(a
2
),即a
2
<a
4
<a
3
,所以a
1
>a
3
>a
4
>a
2
,递推下去就可以得到 a
1
>a
3
>a
5
>…>a
2n一1
>…>a
2n
>…>a
6
>a
4
>a
2
. 由此可以肯定,给定数列的奇数项子数列{a
2n一1
}单调减少且有下界a
2
=[*],偶数项子数列{a
2n
}单调增加且有上界a
1
=1,所以他们都收敛.设他们的极限分别为正数P和Q,即 [*]=Q. 在a
n+1
=f(a
n
)两边同取n→∞时的极限,根据函数f(x)的连续性,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Ms84777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]连续,且f(0)=f(1),证明:在[0,1]上至少存在一点ξ,使得f(ξ)=
设α1,α2,…,αn为n个n维列向量,证明:α1,α2,…,αn线性无关的充分必要条件是
设当实数a为何值时,方程组Ax=b有无穷多解,并求其通解。
设f(x)具有二阶导数,且f"(x)>0.又设u(t)在区间[0,a](或[a,0])上连续,试证明:.
求解下列方程.
设曲线y=xn在点(1,1)处的切线交x轴于点(ξn,0),求
设函数f(u,v)具有二阶连续偏导数,函数g(y)连续可导,且g(y)在y=1处取得极值g(1)=2.求复合函数z=f(χg(y),χ+y)的二阶混合偏导数在点(1,1)处的值.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设f(x)=其中g(x)有二阶连续导数,且g(0)=1,g’(0)=一1,求f’(x),并讨论f’(x)在(一∞,+∞)内的连续性.
设A为二阶矩阵,α1,α2为线性无关的二维列向量,Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
随机试题
调拨价格
“水火既济”是指哪两脏的关系
患者男,55岁。进行床一轮椅转移评定,患者能自己站起,需要较小的帮助转移到轮椅,可以独立完成由坐到站的转换,站立时推、拉患者不能保持平衡。患者此项的Bathel评分为
计算机病毒是一种程序,通常它隐藏在()中。
根据《证券公司为期货公司提供中间介绍业务试行办法》的规定,证券公司不得()。
甲公司属于建筑防水材料行业,是一家集研发、生产、销售、技术咨询和施工服务为一体的专业化建筑防水系统供应商。建筑防水材料是建筑功能材料的重要组成部分,随着国家基础设施建设力度的加大和城镇化速度的加快,其应用领域和市场容量将持续扩大。产业政策方面,国
王老师严厉责罚了小明后发现错不在小明,但因为小明是后进生,王老师就不打算道歉。对此。你怎么看?
制定教学计划首先考虑的问题是()。
公共领域的问题从来都不是科学的问题、统计数字的问题,而是主观认识的问题、意见的问题、想象的问题。在社会领域,民众的主观感觉才是最主要的客观事实。因此,在讨论公共政策问题的时候,看似准确的数字,其实并不像官员、专家们想象的那样重要。相反,如果一个国家的民众感
老王对老李说:“除非你在今天之内按照合同要求支付货款,否则我们法庭上见。”以下哪项判断的含义与上述判断不同?()
最新回复
(
0
)