首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(09年)设二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3. (Ⅰ)求二次型f的矩阵的所有特征值; (Ⅱ)若二次型厂的规范形为y12+y22,求a的值.
(09年)设二次型f(χ1,χ2,χ3)=aχ12+aχ22+(a-1)χ32+2χ1χ3-2χ2χ3. (Ⅰ)求二次型f的矩阵的所有特征值; (Ⅱ)若二次型厂的规范形为y12+y22,求a的值.
admin
2017-05-26
41
问题
(09年)设二次型f(χ
1
,χ
2
,χ
3
)=aχ
1
2
+aχ
2
2
+(a-1)χ
3
2
+2χ
1
χ
3
-2χ
2
χ
3
.
(Ⅰ)求二次型f的矩阵的所有特征值;
(Ⅱ)若二次型厂的规范形为y
1
2
+y
2
2
,求a的值.
选项
答案
(Ⅰ)f的矩阵为A=[*],由特征方程 [*] 得A的特征值为λ
1
=a,λ
2
=a-2,λ
3
=a+1. (Ⅱ)由f的规范形知f的秩为2,正惯性指数为2(负惯性指数为0),因此,A的特征值2个为正,1个为0. 若λ
1
=a=0,则λ
2
=-2<0,λ
3
=1,不合题意;若λ
2
=a-2=0,则a=2,λ
1
=2,λ
3
=3,符合题意;若λ
3
=a+1=0,则a=-1,λ
1
<-1<0,λ
2
=-3<0,不合题意.故a=2.
解析
转载请注明原文地址:https://kaotiyun.com/show/MtH4777K
0
考研数学三
相关试题推荐
微分方程y"+y=cosx的一个特解的形式为y"=().
向量组a1,a2,…,am线性无关的充分必要条件是().
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为a1,a2则a1,A(a1+a2)线性无关的充分必要条件是().
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
二次型f(x1,x2,x3)=(x1+x2)2+(x2-x3)2+(x3+x1)2的秩为_________.
已知三元二次型xTAx的平方项系数均为0,设α=(1,2,一1)T且满足Aα=2α.求该二次型表达式;
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
随机试题
A.扶正B.祛邪C.扶正兼祛邪D.先祛邪后扶正正虚不甚,邪势方张,正气尚能耐攻者的治疗原则是
患者,男,31岁。因外伤导致颌面部严重骨折,并出现呼吸困难。最可能引起此症状的骨折是
心脏复苏首选的药物是
关于现代工程咨询对信息基本要求的说法,错误的是()
ETF最大的特色是()。
出让国有土地使用权,以竞价方式出让的,契税的计税依据一般为竞价的成交价格,包括()。
不单独核算停工损失的企业中,停工损失直接反映在()科目中。
ABC公司是一家上市公司,该公司2015年年末资产总计为10000万元,其中负债合计为2000万元。该公司适用的所得税税率为25%。相关资料如下:资料一:预计ABC公司净利润持续增长,股利也随之相应增长。相关资料如下表所示:资料二:ABC公司认为2
党的领导、人民当家作主和依法治国三者的关系是
微型计算机键盘上的键是
最新回复
(
0
)