首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(10)没A= 已知线性方程组Ax=b存在2个不同的解. (Ⅰ)求λ,a; (Ⅱ)求方程组Ax=b的通解.
(10)没A= 已知线性方程组Ax=b存在2个不同的解. (Ⅰ)求λ,a; (Ⅱ)求方程组Ax=b的通解.
admin
2018-08-01
49
问题
(10)没A=
已知线性方程组Ax=b存在2个不同的解.
(Ⅰ)求λ,a;
(Ⅱ)求方程组Ax=b的通解.
选项
答案
(Ⅰ)因为A为方阵且方程组Ax=b的解不唯一,所以必有|A|=0.而|A|=(λ-1)
2
(λ+1),于是λ=1或λ=-1. 当λ=1时,因为r(A)≠r[A┆b],所以Ax=b无解(亦可由此时方程组的第2个方程为矛盾方程知Ax=b无解),故舍去λ=1. 当λ=1时,对Ax=b的增广矩阵施以初等行变换 [*] 因为Ax=b有解,所以a=-2. (Ⅱ)当λ=-1、a=-2时, [*] 所以,x
1
=[*]+x
3
,x
2
=[*],x
3
任意.令自由未知量x
3
=k,则得Ax=b的通解为 x=[*],其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/N2j4777K
0
考研数学二
相关试题推荐
利用参数方程的求导得切线斜率.[*]
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为().
设A为m×n矩阵,且r(A)=m<n,则下列结论正确的是().
设矩阵A=且A3=0(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
用正交变换法化二次型f(x1,x2,x3)=x12+x2x2+x3x2-4x1x2-4x1x3-4x2x3为标准二次型
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,证明:存在η∈(a,b),使得ηf’(η)+f(η)=0.
曲线r=eθ在θ=π/2处的切线方程为_______·
设f(x)是二阶常系数非齐次线性微分方程y"+py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,().
证明方程x+p+qcosx=0有且仅有一个实根,其中p,q为常数,且0
设向量组(Ⅰ):α1,α2,…,αs的秩为r1,向量组(Ⅱ):β1,β2,…,βs的秩为r2,且向量组(Ⅱ)可由向量组(Ⅰ)线性表示,则().
随机试题
以下关于商品入库作业中的单货核对环节中,说法错误的是()
男,45岁,心慌、乏力、记忆力不好,曾有癫痫样发作4次,晨起床后晕倒,神志模糊,经静脉输注葡萄糖溶液后症状消失,应考虑为
请根据修订后的《刑事诉讼法》的规定,判断下列关于刑罚执行的说法哪些是错误的?()
规划研究要在国家宏观经济发展战略方针指导下,充分考虑(),提出地区或行业的发展目标和政策。
同时履行抗辩权和后履行抗辩权的适用条件中完全一致的是( )。
ArichAmericanwenttoParisandboughtapicturepaintedbyaFrenchartist.TheAmericanthoughtthepicturetobeveryfine
2021年10月,国务院发布的《2030年前碳达峰行动方案》指出,要重点实施“碳达峰十大行动”。下列属于“碳达峰十大行动”的有几项?()①能源绿色低碳转型行动②交通运输绿色低碳行动③碳汇能力巩固提升行动
下列没有语病的一句是()。
浮点加减运算结果满足()时,应作“机器零”处理。
1/One与上面两题一样,本题答案在第三个话轮中男士第三句话的最后部分:...oneadditionalre-port。这种信息和答案集中在一句话的情况在实考中较为少见,但对考生听音辨音、瞬间记忆的能力要求相当高,可以很好地锻炼考生的听力理解能力。
最新回复
(
0
)