首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(10)没A= 已知线性方程组Ax=b存在2个不同的解. (Ⅰ)求λ,a; (Ⅱ)求方程组Ax=b的通解.
(10)没A= 已知线性方程组Ax=b存在2个不同的解. (Ⅰ)求λ,a; (Ⅱ)求方程组Ax=b的通解.
admin
2018-08-01
30
问题
(10)没A=
已知线性方程组Ax=b存在2个不同的解.
(Ⅰ)求λ,a;
(Ⅱ)求方程组Ax=b的通解.
选项
答案
(Ⅰ)因为A为方阵且方程组Ax=b的解不唯一,所以必有|A|=0.而|A|=(λ-1)
2
(λ+1),于是λ=1或λ=-1. 当λ=1时,因为r(A)≠r[A┆b],所以Ax=b无解(亦可由此时方程组的第2个方程为矛盾方程知Ax=b无解),故舍去λ=1. 当λ=1时,对Ax=b的增广矩阵施以初等行变换 [*] 因为Ax=b有解,所以a=-2. (Ⅱ)当λ=-1、a=-2时, [*] 所以,x
1
=[*]+x
3
,x
2
=[*],x
3
任意.令自由未知量x
3
=k,则得Ax=b的通解为 x=[*],其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/N2j4777K
0
考研数学二
相关试题推荐
设矩阵A=b=若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为
设A为n阶矩阵,α1,α2,α3为n维列向量,其中α1≠0,且Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,证明:α1,α2,α3线性无关.
设A,B都是n阶矩阵,其中B是非零矩阵,且AB=O,则().
当0<x<时,证明:<sinx<x.
曲线r=eθ在θ=π/2处的切线方程为_______·
用变量代换x=lnt将方程化为y关于t的方程,并求原方程的通解.
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
证明方程x+p+qcosx=0有且仅有一个实根,其中p,q为常数,且0
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
随机试题
新兴网络媒介相对于传统媒介的最大优势是______。
I’dratheryou______anythingaboutitforthetimebeing.
骨髓腔中红骨髓开始脂肪化发生在
下列指数中,属于数量指标指数的是()。【2009年真题】
某施工企业于开发商签订了工程承包合同,约定实行政府指导价,但是对工程价款约定不明确,由于施工企业人员不足导致工期后延2个月,此时遇到市场价格上涨20%,其后延2个月的工程的费用应该()。
通过向投资者发行股份或受益凭证募集资金,再对各类金融产品进行组合投资的金融机构是()。
体育教材的重点是指()。
遗忘物是指财物的所有人由于不慎暂时遗忘的物品,物主对遗忘物只是暂时失去占有和控制,其特征是遗忘的时间短,物主一般会很快回想起来遗忘物的时间地点。而遗失物是指持有人因疏忽而完全丧失了对财物的实际控制力,且持有人通常难以回忆起财物的确切失落地点。 下列属于遗
在包含1000个元素的线性表中实现如下各运算,所需的执行时间最长的是________。
Lebanon’snewleaderisvisitingSyriainorderto
最新回复
(
0
)