首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组(I):α1,α2,…,αr诉线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
设向量组(I):α1,α2,…,αr诉线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
admin
2016-04-11
33
问题
设向量组(I):α
1
,α
2
,…,α
r
诉线性无关,且(I)可由(Ⅱ):β
1
,β
2
,…,β
s
线性表示.证明:在(Ⅱ)中至少存在一个向量β
j
,使得β
j
,α
2
,…,α
r
线性无关.
选项
答案
可用反证法:否则,对于j=1,2,…,s,向量组β
j
,α
2
,…,α
r
线性相关,又α
2
,…,α
r
,线性无关,故β
j
可由α
2
,…,α
r
,线性表示,→(Ⅱ)可由α
2
,…,α
r
,线性表示,又已知α
1
可由(II)线性表示,→α
1
可由α
2
,…,α
r
线性表示,这与(I)线性无关矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/N8w4777K
0
考研数学一
相关试题推荐
f(x)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f’(0)=0,证明:存在ξ∈(-1,1),使得f"’(ξ)=3.
设A为n阶实对称正交矩阵,且1为A的r重特征根,则|3E-A|=______。
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k<n.(Ⅰ)求二次型xTAx的规范形;(Ⅱ)证明B=E+A+A2+A3+A4是正定矩阵,并求行列
一架飞机落地的速度为v0,经时间t1后,飞机的速度变为v1,飞机落地时看作起始时间,飞机滑翔的阻力与速度的平方成正比,比例系数k﹥0。(Ⅰ)求飞机在t1时间内运动速度v与时间t的函数关系式;(Ⅱ)求在t1这段时间内飞机走过的路程。
α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且R(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T.c表示任意常数,则线性方程组Ax=b的通解x=().
设4阶实对称矩阵A满足A4=E,且A≠±E,则A的不同特征值的个数为()
设函数y=y(x)由参数方程确定,则|t=0=________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至少有一件是废品”;
设随机变量X服从参数为(2,p)的二项分布,随机变量y服从参数为(3,p)的二项分布,若P丨x≥1丨=5/9,则P丨Y≥1丨=_________.
在天平上重复称量一重为a的物品,假设各次称量结果相互独立且同服从正态分布N(a,0.22),若以n表示n次称量结果的算术平均值,则为使P{|X ̄-a|<0.1}≥0.95,n的最小值应小于自然数_________.
随机试题
患者,男,45岁。高血压病史10年,未坚持服药。2小时前因情绪激动突然意识不清,双侧瞳孔不等大。该患者应首先考虑的诊断是
糖尿病的诊断标准为()
下表为某国有企业8年间的应纳税所得额情况,该企业8年间须缴纳企业所得税税额是( )。
为了保证培训取得预期的效果,就必须对培训进行()监控和评估。(2005年5月三级真题)
小明背诵一首唐诗,背诵了10遍刚刚好能回忆出来,那么小明需再背()遍,记忆效果更佳。
在生物学中,生物净化是指生物通过自身的代谢,使环境中污染物数量减少,浓度下降,毒性减轻,有害成分转化、分解,直至消失的过程。根据上述定义,下列选项涉及生物净化的是()。
随着社会现代化程度的不断提高,社会分工日益精细,人与人之间的依赖程度也愈来愈高,人们的生活重心正逐渐由工作单位向社区转移。而就本质而言,人与人之间的互动关系构成了社区生活的主要内容。根据以上文字,可以推出()。
以下心理现象中,属于学习的是()。
构造正交矩阵Q,使得QTAQ是对角矩阵
Revisionisrethinking,buttwomisconceptionsarebynomeansuncommonamongwriters,especiallyamongdevelopingwriters.Firs
最新回复
(
0
)