首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年]设函数f(x)连续且恒大于零, 其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}. 讨论F(t)在区间(0,+∞)内的单调性;
[2003年]设函数f(x)连续且恒大于零, 其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}. 讨论F(t)在区间(0,+∞)内的单调性;
admin
2019-04-08
44
问题
[2003年]设函数f(x)连续且恒大于零,
其中Ω(t)={(x,y,z)|x
2
+y
2
+z
2
≤t
2
},D(t)={(x,y)|x
2
+y
2
≤t
2
}.
讨论F(t)在区间(0,+∞)内的单调性;
选项
答案
因Ω(t)为球体,且被积函数为x
2
+y
2
+z
2
的函数,故用球面坐标系计算三重积分,对分子使用球坐标变换x=ρsinφcosθ,y=ρsinφsinθ,z=ρcosφ: [*] f(x
2
+y
2
+z
2
)dV=∫
0
2π
dθ∫
0
π
dφ∫
0
t
f(ρ
2
)ρ
2
sinφdρ =∫
0
2π
dθ∫
0
π
sinφdφ∫
0
t
f(ρ
2
)ρ
2
dρ =4π∫
0
t
f(ρ
2
)ρ
2
dρ. 分母作极坐标变换x=rcosθ,y=rsinθ,得 [*]f(x
2
+y
2
)dσ=∫
0
2π
dθ∫
0
t
f(r
2
)rdr=2π∫
0
t
f(r
2
)rdr, ∫
-t
t
f(x
2
)dx=2∫
0
t
f(r
2
)dr (因f(r
2
)为偶函数). 因而 F(t)=2∫
0
t
f(ρ
2
)ρ
2
dρ/∫
0
t
f(r
2
)rdr, G(t)=π∫
0
t
f(r
2
)rdr/∫
0
t
f(r
2
)dr. 利用变上限求导公式,经计算得到 F’(t)=[2f(t
2
)t
2
]∫
0
t
f(r
2
)rdr一2f(t
2
)t∫
0
t
f(ρ
2
)ρ
2
dρ/[∫
0
t
f(r
2
)rdr]
2
=2tf(t
2
)[∫
0
t
trf(r
2
)dr一∫
0
t
f(r
2
)r
2
dr/[∫
0
t
f(r
2
)rdr]
2
=2tf(t
2
)[∫
0
t
f(r
2
)r(t-r)dr]/[∫
0
t
f(r
2
)rdr]
2
故在(0,+∞)上F’(t)>0,所以F(t)在(0,+∞)内单调增加.
解析
转载请注明原文地址:https://kaotiyun.com/show/ND04777K
0
考研数学一
相关试题推荐
已知线性方程组的一个基础解系为(b11,b21,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T,试写出线性方程组的通解,并说明理由。
设线性方程组与方程x1+2x2+x3=a-1有公共解,求a的值及所有公共解。
设向量组a1,a2线性无关,向量组a1+b,a2+b线性相关,证明:向量b能由向量组a1,a2线性表示。
求幂级数(|x|<1)的和函数S(x)及其极值.
设A=,E为3阶单位矩阵.(I)求方程组Ax=0的一个基础解系;(Ⅱ)求满足AB=E的所有矩阵B.
已知f(x,y)=,设D为由x=0、y=0及x+y=t所围成的区域,求F(t)=f(x,y)dxdy.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=x2/2,P点的坐标为(1/2,1)
设f(x)在x=0的邻域内二阶连续可导,=2,求曲线y=f(x)在点(0,f(0))处的曲率.
设f(x,y),g(x,y)在平面有界闭区域D上连续,g(x,y)≥0.证明:存在(ξ,η)∈D,使得
设f(x)在x=0处连续,求极限f(x2+y2+z2)dν,其中Ω:.
随机试题
生物等效性
四肢动脉造影适用于
艾滋病的特异性实验诊断方法不包括
工程咨询单位资格包括()。
设计招标的目的是选择最适合项目需要的设计单位,下列不属于设计单位主要考察内容的是()。
根据企业所得税暂行条例及相关规定,不允许计提折旧的固定资产有()。
2017年1月26日17时许,某县何坝镇村民林某为小孩过满月,邀请同村罗某、李某等十余人在家聚会。21时许,罗某、李某因互相劝酒发生口角后,罗某打了李某背部一拳,致李某滑倒在地扭伤脚踝。随后,李某拔打110报警。罗某酒醒后表示后悔,称愿意赔礼道歉,赔偿
醉酒的人在醉酒状态中,对本人有危险或者对他人的人身、财产或者公共安全有所威胁的,应当对其采取的保护性措施是()。
有以下程序#includemain(){charw[20],a[5][10]={"abcder","ghijkl","mnopq","rstuv","wxyz"};inti,j;for(i=0;i<5;i++){j=0;while(a[i
若查询的设计如下,则查询的功能是()。
最新回复
(
0
)