首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1 ,α2 ,α3 ,α4 ,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1 ,α2 ,α3 ,α4 ,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
admin
2022-01-05
64
问题
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α
1
,α
2
,α
3
,α
4
,α
5
是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
B、α
1
一α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
C、α
1
一α
2
,α
2
一α
3
,α
3
一α
4
,α
4
+α
5
,α
5
+α
1
D、α
1
一α
2
,α
2
一α
3
,α
3
一α
4
,α
4
一α
5
,α
5
一α
1
答案
A
解析
上述各选择项中的向量均为AX=0的解向量,这是显然的.关键要确定哪一组向量线性无关.可利用下述结论观察求出:
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,设β
1
=α
1
±α
2
,β
2
=α
2
±α
3
,…,β
s一1
一α
s一1
±α
s
,β
s
=α
s
±α
1
,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则
(1)当s与k的奇偶性相同时,向量组β
1
,β
2
,…,β
r
线性相关;
(2)当x与k的奇偶性相反时,向量组β
1
,β
2
,…,β
r
线性无关.
由线性相关的定义易知,选项(D)中向量组线性相关.因
(α
1
一α
2
)+(α
2
一α
3
)+(α
3
一α
4
)+(α
4
一α
5
)+(α
5
一α
1
)=0,
至于(B)、(C)中的向量组也可用矩阵表示法证明线性相关.例如对于(B).有
[α
1
一α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
]=[α
1
,α
2
,α
3
,α
4
,α
5
]
故选项(B)中向量组线性相关,同理,可证选项(C)中向量组也线性相关.
转载请注明原文地址:https://kaotiyun.com/show/NER4777K
0
考研数学三
相关试题推荐
设f(x)在x=0的某邻域内连续,在x=0处可导,且f(0)=0。则φ(x)在x=0处()
设{an}为正项数列,下列选项正确的是
设F1(x)与F2(x)分别是随机变量X1与X2的分布函数,为使F(x)=aF1(x)一bF2(x)是某一随机变量的分布函数,在下列给定的各组数值中应取
设函数讨论函数f(x)的间断点,其结论为
设随机变量(i=1,2)且满足P{X1X2=0}=1,则P{X1=X2}等于()
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设A,B为n阶实对称矩阵,则A与B合同的充分必要条件是().
设f(x),g(x)在区间[a,b]上连续,且g(x)<f(x)<m,则由曲线y=g(x),y=f(x)及直线x=a,x=b所围成的平面区域绕直线y=m旋转一周所得旋转体体积为().
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
如图,C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P分别引平行于x轴和y轴的直线,得两块阴影所示区域A,B,它们有相等的面积,设C的方程是y=x2,C1的方程是y=x2,求曲线C2的方程.
随机试题
试验(性)的,尝试的adj.t________
2型糖尿病患者,TC6.1mmol/L,TG6.8mmol/L,LDL3.9mmol/L,HDL0.8mmol/L。首选的调脂药物是
()的特点是不允许纳税人扣除外购固定资产的价值。
食品的生物加工技术包括()。
组织学校活动的基本纲领和重要依据是()。
按照《中华人民共和国教育法》的规定,设立学校及其他教育机构必须具备的基本条件包括()
简述通货膨胀的基本含义与基本类型。
经济制度是生产关系的总和。生产关系是人们在生产过程中所形成的人与人之间的关系,由三个方面构成:生产资料归谁所有;人们在生产中的地位和相互关系;产品如何分配。建设中国特色社会主义经济的基本经济制度和基本分配制度是()
(2009年上半年)WebService的各种核心技术包括XML、Namespace、XMLSchema、SOAP、WSDL、UDDI、WS-Inspection、WS-Security、WS-Routing等,下列关于WebService技术的叙
Whendidtheaccidenthappened?
最新回复
(
0
)