首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1 ,α2 ,α3 ,α4 ,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α1 ,α2 ,α3 ,α4 ,α5是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
admin
2022-01-05
85
问题
设A是m×n矩阵,齐次线性方程组AX=0,r(A)=n一5,α
1
,α
2
,α
3
,α
4
,α
5
是该方程组5个线性无关的解向量,则方程组AX=0的一个基础解系是( ).
选项
A、α
1
+α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
B、α
1
一α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
C、α
1
一α
2
,α
2
一α
3
,α
3
一α
4
,α
4
+α
5
,α
5
+α
1
D、α
1
一α
2
,α
2
一α
3
,α
3
一α
4
,α
4
一α
5
,α
5
一α
1
答案
A
解析
上述各选择项中的向量均为AX=0的解向量,这是显然的.关键要确定哪一组向量线性无关.可利用下述结论观察求出:
已知向量组α
1
,α
2
,…,α
s
(s≥2)线性无关,设β
1
=α
1
±α
2
,β
2
=α
2
±α
3
,…,β
s一1
一α
s一1
±α
s
,β
s
=α
s
±α
1
,其中s为向量组中的向量个数.又设上式中带负号的向量个数为k,则
(1)当s与k的奇偶性相同时,向量组β
1
,β
2
,…,β
r
线性相关;
(2)当x与k的奇偶性相反时,向量组β
1
,β
2
,…,β
r
线性无关.
由线性相关的定义易知,选项(D)中向量组线性相关.因
(α
1
一α
2
)+(α
2
一α
3
)+(α
3
一α
4
)+(α
4
一α
5
)+(α
5
一α
1
)=0,
至于(B)、(C)中的向量组也可用矩阵表示法证明线性相关.例如对于(B).有
[α
1
一α
2
,α
2
+α
3
,α
3
+α
4
,α
4
+α
5
,α
5
+α
1
]=[α
1
,α
2
,α
3
,α
4
,α
5
]
故选项(B)中向量组线性相关,同理,可证选项(C)中向量组也线性相关.
转载请注明原文地址:https://kaotiyun.com/show/NER4777K
0
考研数学三
相关试题推荐
设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn(n≥2)为来自该总体的简单随机样本。则对于统计量
设n阶方阵A、B、C满足关系式ABC=E,其中E为n阶单位矩阵,则必有【】
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解(一般解)是()
设函数讨论函数f(x)的间断点,其结论为
累次积分可以写成
设随机变量序列X1,…,Xn,…相互独立,根据辛钦大数定律,当n→∞时依概率收敛于其数学期望,只要{Xn,n≥1}
设矩阵A=相似于矩阵B=求a,b的值;
已知二次型f(x1,x2,x3)=4x22-3x32+4x1x2-4x1x3+8x2x3.写出二次型f的矩阵表达式;
设曲线y=e-x(x≥0)(1)把曲线y=e-x,x轴,y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周,得一旋转体,求此旋转体体积V(ξ);求满足(2)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出该面积.
某保险公司接受了10000辆电动自行车的保险,每辆车每年的保费为12元.若车丢失,则赔偿车主1000元.假设车的丢失率为0.006,对于此项业务,试利用中心极限定理,求保险公司:亏损的概率α;
随机试题
骨盆骨折引起膜部尿道断裂后,产生的尿外渗范围主要在
哮喘持续状态是指重度哮喘发作持续时间超过
我国的养老发展模式中,养老方式的基础是()。
下列属于银行对账的功能包括()。
评价一个项目是否可行,下列说法错误的是()。
下列表述中,正确的是()。
宪章运动
与唐律相比,明律在犯罪与刑罚方面最主要的特点是()
π
Myjobwastomakeclassroomobservationsandencourageatrainingprogramthatwouldenablestudentstofeelgoodaboutthemsel
最新回复
(
0
)