首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫03(x2+x)f"’(x)dx.
admin
2019-08-01
110
问题
如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l
1
与l
2
分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分∫
0
3
(x
2
+x)f"’(x)dx.
选项
答案
由(3,2)是曲线y=f(x)的拐点知,f"(3)=0;由直线l
1
与l
2
分别是曲线y=f(x)在点(0,0)与(3,2)处的切线知,f’(0)=2,f’(3)=一2,f(0)=0,f(3)=2.利用分部积分法可得 ∫
0
3
(x
2
+x)f"’(x)dx=(x
2
+x) f"(x)|
0
3
一∫
0
3
(2x+1)f"(x)dx =一∫
0
3
(2x+1) f"(x)dx =一(2x+1)f’(x)+2∫
0
3
f’(x)dx =一 [7×(一2)一2] +2∫
0
3
f’(x)dx = 16+2 f(x)|
0
3
=16+4=20.
解析
转载请注明原文地址:https://kaotiyun.com/show/NJN4777K
0
考研数学二
相关试题推荐
设u=u(x,y)由方程组u=f(x,y,z,t),g(y,z,t)=0,h(z,t)=0确定,其中f,g,h连续可偏导且
设f(x)可导且f(x)≠0,则=__________.
∫-22(x2+3x+4)
设α1,α2,…,αs和β1,β2,…,βt都是n维向量组,证明r(α1,α2,…,αs,β1,β2,…,βt)≤r(α1,α2,…,αs)+r(β1,β2,…,βt).
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf’’(x)(x-a)(x-b)dx.
作自变量与因变量变换:u=x+y,v=x-y,w=xy-z,变换方程为w关于u,v的偏微分方程,其中z对x,y有连续的二阶偏导数.
设z=f(x,y,u),其中f具有二阶连续偏导数,u(x,y)由方程u5-5xy+5u=1确定.求
设A是n阶实矩阵,有Aξ=λξ,ATη=μη,,其中λ,μ是实数,且λ≠μ,ξ,η是n维非零向量,证明:ξ,η正交.
[2006年]设函数g(x)可微,h(x)=e1+g(x),h'(1)=1,g'(1)=2,则g(1)=().
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
随机试题
依据国内外编制管理的经验,编制管理机构的负责人一般由政府首长兼任,采取的领导方式是
A锋电位B阈电位C负后电位D正后电位E局部电位终板电位的性质是
参与构成肺小叶的结构是
黄某住甲市A区,因涉嫌诈骗罪被甲市检察院批准逮捕。由于案情复杂,期限届满侦查不能终结,侦查机关报请有关检察机关批准延长一个月。其后,由于该案重大复杂,涉及面广,取证困难,侦查机关报请有关检察机关批准后,又延长了二个月。但是,延长二个月后,仍不能侦查终结,且
下列合同可以继续履行的是:
城镇个体工商户和灵活就业人员也都要参加基本养老保险,缴费基数统一为(),缴费比例为()。
甲公司系增值税一般纳税人,开设有外币账户,会计核算以人民币作为记账本位币,外币交易采用交易发生日的即期汇率折算,按月计算汇兑损益。该公司2015年12月份发生的外币业务及相关资料如下:(1)5日,从国外乙公司进口原材料一批,货款200000欧元,当日即期
下列属于控制环境要素的内容有()。
下列没有体现光折射现象的是()。
2,6,30,210,2310,()
最新回复
(
0
)