首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
admin
2018-05-22
59
问题
设A=
有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P
-1
AP为对角矩阵.
选项
答案
因为A有三个线性无关的特征向量,所以λ=2的线性无关的特征向量有两个,故 r(2E-A)=1, 而2E-A=[*],所以x=2,y=-2. 由|λE-A|=[*]=(λ-2)
2
(λ-6)=0得λ
1
=λ
2
=2,λ
3
=6 由(2E-A)X=0得λ=2对应的线性无关的特征向量为α
1
=[*],α
2
=[*] 由(6E=A)X=0得λ=6对应的线性无关的特征向量为α
3
=[*] 令P=[*],则有P
-1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Dqk4777K
0
考研数学二
相关试题推荐
微分方程(y+x2e-x)dx-xdy=0的通解是y=_______.
设A为4阶实对称矩阵,且A2+A=0,若A的秩为3,则A与A相似于
设D是位于曲线(a>1,0≤x<+∞)下方、x轴上方的无界区域.(1)求区域D绕x轴旋转一周所成旋转体的体积V(a);(2)当a为何值时,V(a)最小?并求此最小值.
设函数y=y(x)由参数方程确定,则曲线y=y(x)在x=3处的法线与x轴交点的横坐标是
设y=y(x),z=z(x)是由方程z=xf(x+y)和F(x,y,z)=0所确定的函数,其中f和F分别具有一阶连续导数和一阶连续偏导数,求.
设A为3阶实对称矩阵,且满足条件A2+2A=0,已知A的秩r(A)=2.(1)求A的全部特征值;(2)当k为何值时,矩阵A+kE为正定矩阵,其中E为3阶单位矩阵.
设A是m×n矩阵,且方程组Ax=b有解,则
设A=[α1,α2……αn]经过若干次初等行变换得B=[β1β2……βn],b=[b1,b2,…bn]T≠0则(1)Ax=0和Bx=0同解.(2)Ax=b和Bx=b同解.(3)A,B中对应的任何部分行向量组有相同的线性相关性.(4)A,B中对应的任何部分列
A、 B、 C、 D、 B此题若立刻作变换tanx=t或tan,则在0≤x≤2π上不能确定出单值连续的反函数x=ψ(t).可先利用周期性和奇偶性将积分区间缩小,在此小区间上作变换tanx=t.在第2式
随机试题
下列哪一种静脉麻醉药更适合用于冠心病病人的麻醉诱导?
A.骨肉瘤B.乳腺癌C.非霍奇金淋巴瘤D.卵巢肿瘤E.肝细胞癌适合本不能手术,先化疗或放疗,后术的是
不属于阻塞性肺气肿的体征是()
河流的混合过程包括()等分散过程及其联合过程。
在采购材料过程中支付的各项采购费用,均应记人“管理费用”账户。()
,5,,()
在“大萧条”的年代,是凯恩斯指出了市场失灵的可能性,也是凯恩斯给出了应对之方:政府增加开支,创造有效需求。这个今日天经地义的政策,70年前却是_________的言论,称它为一场“革命”,毫不为过。对于凯恩斯的新理论,当时学术界_________,西方各国
A、 B、 C、 D、 D
NewresearchfromtheUnitedStatessuggeststhatthemillennia-oldtherapyofyogacouldbenefitmillionsofpeoplewhosuffe
TimeManagementforCollegeStudentsTimeyouspentinhighschoolistotallydifferentfromthatincollege.Itisacritic
最新回复
(
0
)