首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…an为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…an为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
admin
2019-03-21
51
问题
设f(x)=a
1
ln(1+x)+a
2
ln(1+2x)+…+a
n
ln(1+nx),其中a
1
,a
2
,…a
n
为常数,且对一切x有|f(x)|≤|e
x
-1|.证明:|a
1
+2a
2
+…+na
n
|≤1.
选项
答案
当x≠0时,由|f(x)l≤|e
x
-1|得 [*] 而 [*] =a
1
+2a
2
+…+na
n
, 且[*],根据极限保号性得|a
1
+2a
2
+…+na
n
|≤1.
解析
转载请注明原文地址:https://kaotiyun.com/show/NLV4777K
0
考研数学二
相关试题推荐
下列函数在点x=0处均不连续,其中点x=0是f(x)的可去间断点的是[].
设y=y(x)是由方程2y3-2y2+2xy-x2=1确定的,求y=y(x)的驻点,并判定其驻点是否是极值点?
设y=f(x)可导,且y’≠0.(Ⅰ)若已知y=f(x)的反函数x=φ(y)可导,试由复合函数求导法则导出反函数求导公式;(Ⅱ)若又设y=f(x)二阶可导,则=________.
设函数f(x)在x=x0处存在f’+(x0)与f’-(x0),但f’+(x0)≠f’-(x0),说明这一事实的几何意义.
设A为3阶矩阵,α1,α2,α3是线性的无关3维列向量组,满足Aα1=α1+2α2+2α3,Aα2=2α1+α2+2α3,Aα3=2α1+2α2+α3.(1)求A的特征值.(2)判断A是否相似于对角矩阵?
α=,求A的全部特征值,并证明A可以对角化.
3阶实对称矩阵A的特征值为1,2,-2,α1=(1,-1,1)T是A的属于1的特征向量.记B=A5-4A3+E.(1)求B的特征值和特征向量.(2)求B.
证明n阶行列式
求f(χ)=的间断点并判断其类型.
设f(x,y)在点(a,b)的某邻域具有二阶连续偏导数,且f’y(a,b)≠0,证明由方程f(x,y)=0在x=a的某邻域所确定的隐函数y=φ(x)在x=a处取得极值b=φ(a)的必要条件是:f(a,b)=0,f’x(a,b)=0,且当r(a,b)>0
随机试题
中压废热锅炉的蒸汽压力为()。
A.机械性刺激敏感B.突发性电击样痛C.定点性咀嚼剧痛D.疼痛不定位,夜间加重E.刺痛人洞引起疼痛下述疾病可能出现的疼痛描述正确的是深龋
赵某与罗某系邻居。两人因日常小事纠纷不断。某日,两人又起纠纷,争吵中罗某抄起木棍,打在赵某头上,致使其严重脑震荡,左耳失聪,赵某因此受重伤而向公安机关报案。公安机关认为本案系邻里纠纷,以民事调解为宜,不予立案。赵某即将本案诉至人民法院。下列选项中,哪一项不
当电梯轿厢使用玻璃轿壁时,必须安装()高度的扶手。
你认为最重要的样品是()
环境创设中,幼儿与教师共同合作,共同参与,符合幼儿环境创设的()原则。
森林效应:一棵树如果单独生长在一个地方,往往比较矮小、畸形,而当众多树木生长在一起、,共用水源的时候,往往能长得郁郁葱葱。请问“森林效应”对你有什么启示?
长期以来,我国城市管理执法体制弊端多多,部门林立,各管一摊。管市容的不管破坏绿化的,管破坏绿化的不管违章建设,管违章建设的不管街头无照摆摊……而许多违法问题的处理又常常涉及几个执法部门。比如,对于马路市场,工商、交通、市容等执法部门都可以管,叉都可以不管。
用来控制、指挥和协调计算机各部件工作的是()。
HIV&AIDS[A]AIDShasnowsurpassedtheBlackDeathonitscoursetobecometheworstpandemicinhumanhistory.Attheendof
最新回复
(
0
)