首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B皆为n阶矩阵,则下列结论正确的是( ).
设A,B皆为n阶矩阵,则下列结论正确的是( ).
admin
2019-08-12
52
问题
设A,B皆为n阶矩阵,则下列结论正确的是( ).
选项
A、AB=O的充分必要条件是A=O或B=O
B、AB≠O的充分必要条件是A≠O且B≠O
C、AB=O且r(A)=n,则B=O
D、若AB≠O,则|A|≠0或|B|≠0
答案
C
解析
取A=
≠O,B=
≠O,显然AB=O,故选项A、B都不对,取A=
,B=
,显然AB=
≠O,但|A|=0且|B|=0,故D不对;由AB=O得r(A)+r(B)≤n,因为r(A)=n,所以r(B)=0,于是B=O,所以选C.
转载请注明原文地址:https://kaotiyun.com/show/NON4777K
0
考研数学二
相关试题推荐
设A是主对角元素为0的4阶实对称矩阵,E是4阶单位矩阵,且E+AB是不可逆的对称矩阵,求A.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又则AB=__________.
函数在x=π处的()
设向量α=[a1,a2,…,an]T,β=[b1,b2,…,bn]T都是非零向量,且满足条件αTβ=0,记n阶矩阵A=αβT,求:A的特征值和特征向量;
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×n中元素aij的代数余子式(i,j=1,2,…,n).二次型f(x1,x2,…,xn)=(1)记X=(x1,x2,…,xn)T,把f(x1,x2,…,xn)写成矩阵形式,并证明二次型f(X)
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
设ξ0=(1,-1,1,-1)T是线性方程组的一个解向量,试求:(I)方程组(*)的全部解;(Ⅱ)方程组(*)的解中满足x2=x3的全部解.
随机试题
A.beforethecancercellsspreadelsewhereB.themorechancesofdyingofX-rayradiationhewillhaveC.whatismostrespons
正常心脏与下列哪种组织器官毗邻
下列哪一选项属于违反律师或公证有关制度及执业规范规定的情形?(2012年卷一50题,单选)
不考虑其他因素,下列有关会计差错的会计处理中,不符合现行会计准则规定的是()。
2010年7月8日,甲、乙、丙拟共同出资设立一有限责任公司,并制定了公司章程,其有关要点如下:(1)公司注册资本总额为400万元;(2)甲、丙各以货币100万元出资。首次出资均为50万元,其余出资均应在公司成立之日起2年内缴付;乙以房屋作价出资200万元,
小李开了一个多小时会议,会议开始时看了手表,会议结束时又看了手表,发现时针和分针恰好互换了位置。问这次会议大约开了1小时多少分?()
英国剑桥大学汉学教授胡司德在他本周出版的新书中指出,中国的饮食文化蕴涵生存之道。他向记者披露了这份“隐藏的食谱”。经过研究中国古代史的文字记载,他探讨了中国丰富的烹饪文化对古代和当代社会、政治与文化的重要性。据胡司德研究显示,许多为中国历代君主出
2012年下半年,某网上商城一度宣布“大家电零毛利”,引发一轮网上购物的热潮。下列关于“网上购物”的说法,正确的是()。
Electronicmailhasbeeninwidespreaduseformorethanadecade,simplifyingtheflowofideas,connectingpeoplefromdistant
TheWriter’sMothercollectedstampsforhimforMorethantenyears.TheWriterspentalotofMoneyonstamp-collecting.
最新回复
(
0
)