首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B皆为n阶矩阵,则下列结论正确的是( ).
设A,B皆为n阶矩阵,则下列结论正确的是( ).
admin
2019-08-12
54
问题
设A,B皆为n阶矩阵,则下列结论正确的是( ).
选项
A、AB=O的充分必要条件是A=O或B=O
B、AB≠O的充分必要条件是A≠O且B≠O
C、AB=O且r(A)=n,则B=O
D、若AB≠O,则|A|≠0或|B|≠0
答案
C
解析
取A=
≠O,B=
≠O,显然AB=O,故选项A、B都不对,取A=
,B=
,显然AB=
≠O,但|A|=0且|B|=0,故D不对;由AB=O得r(A)+r(B)≤n,因为r(A)=n,所以r(B)=0,于是B=O,所以选C.
转载请注明原文地址:https://kaotiyun.com/show/NON4777K
0
考研数学二
相关试题推荐
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又则AB=__________.
设α1,α2,α3均为线性方程组Ax=b的解,下列向量中α1一α2,α1一2α2+α3,(α1一α3),α1+3α2—4α3,是导出组Ax=0的解向量的个数为()
设函数f’(x)在[a,b]上连续,且f(a)=0,试证明:
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是r(B)=n.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设α1,…,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
(1)设问k满足什么条件时,kE+A是正定矩阵;(2)A是n阶实对称矩阵,证明:存在大于零的实数k,使得kE+A是正定矩阵.
设A,B均为n阶矩阵,且A+B=AB.(1)证明A-E可逆;(2)证明AB=BA.
已知对于n阶方阵A,存在自然数k,使得Ak=O.试证明:矩阵E一A可逆,并写出其逆矩阵的表达式(E为n阶单位阵).
已知ξ=(0,1,0)T是方程组的解,求通解.
随机试题
下列选项中,国际运输保险的货运量最大的是()
多普勒频移与下面哪项无关
下列哪种诊断最准确为明确有无后纵韧带骨化,宜行哪项检查
十二指肠溃疡的直接X线征象是
房地产置业投资中,全部流动资金以货币资金形式被收回的时间在()。
实施素质教育是提高国民素质,培养跨世纪人才的战略举措,素质教育的特点是()。
在全县上下的共同努力下,某县户均税费负担逐年下降,2001年比2000年下降了3%,2002年比2001年下降了4%,2003年比2002年下降了5%,问2003年该县的户均税费负担比2000年下降了百分之几?()
下列句子中,加下划线的成语使用不恰当的一句是______。
根据蒙代尔一弗莱明模型简要分析开放经济条件下财政政策和货币政策的作用效果。
Healthyguiltisawarningsignalthateithersomethingdangerousisabouttohappenorsomethinghasalreadyhappenedthatneed
最新回复
(
0
)