首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P[x]2={f(x)=a0+a1x+a2x2|ai∈P,i=1,2,3}对多项式的加法与数乘运算构成P上的3维线性空间. (1)证明:x2+x,x2一x,x+1是P[x]2的一个基. (2)求2x2+7x+3在此基下的坐标.
已知P[x]2={f(x)=a0+a1x+a2x2|ai∈P,i=1,2,3}对多项式的加法与数乘运算构成P上的3维线性空间. (1)证明:x2+x,x2一x,x+1是P[x]2的一个基. (2)求2x2+7x+3在此基下的坐标.
admin
2020-09-25
96
问题
已知P[x]
2
={f(x)=a
0
+a
1
x+a
2
x
2
|a
i
∈P,i=1,2,3}对多项式的加法与数乘运算构成P上的3维线性空间.
(1)证明:x
2
+x,x
2
一x,x+1是P[x]
2
的一个基.
(2)求2x
2
+7x+3在此基下的坐标.
选项
答案
(1)在P[x]
2
中任取一个多项式f(x)=a
0
+a
1
x+a
2
x
2
,设 a
0
+a
1
x+a
2
x
2
=l
1
(x
2
+x)+l
2
(x
2
一x)+l
3
(x+1), 整理可得(l
1
+l
2
)x
2
+(l
1
一l
2
+l
3
)x+l
3
=a
2
x
2
+a
1
x+a
0
, 从而有方程组 [*] 其系数行列式[*]=一2≠0,从而可得方程组有唯一解, 解得l
1
=[*](a
2
+a
1
一a
0
),l
2
=[*](a
2
一a
1
+a
0
),l
3
=a
0
. ① 所以f(x)可由x
2
+x,x
2
-x,x+1唯一线性表示. 所以方程k
1
(x
2
+x)+k
2
(x
2
一x)+k
3
(x+1)=0仅有零解,所以x
2
+x,x
2
一x,x+1 线性无关.故x
2
+x,x
2
一x,x+1是P[x]
2
的一个基. (2)设2x
2
+7x+3=l
1
(x
2
+x)+l
2
(x
2
一x)+l
3
(x+1),令a
0
=3,a
1
=7,a
2
=2代入式① 中可得:l
1
=3,l
2
=一1,l
3
=3. 所以2x
2
+7x+3=3(x
2
+x)一(x
2
一x)+3(x+1). 从而2x
2
+7x+3在基x
2
+x,x
2
一x,x+1下的坐标为(3,一1,3)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/NWx4777K
0
考研数学三
相关试题推荐
微分方程+y=1的通解是_________.
设α=(1,-1,a)T,β=(1,a,2)T,A=E+αβT,且λ=3是矩阵A的特征值,则矩阵A属于特征值λ=3的特征向量是_________
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
已知且n维向量α1,α2,α3线性无关,则α1+α2,α2+2α3,Xα3+Yα1线性相关的概率为________.
已知实二次型f(x1,x2,x3)=a(x12,x22,x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
设A,B为随机事件,则P(A)=P(B)充分必要条件是()
(1991年)试证明函数在区间(0,+∞)内单调增加.
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S2为样本均值和样本方差,则
设X1,X2,…,Xn是来自标准正态总体的简单随机样本,和S相应为样本均值和样本标准差,则().
将一枚均匀的硬币接连掷5次,结果反面至少出现了一次,试求:(1)正面出现次数X的概率分布;(2)正面出现的次数与反面出现的次数之比Y的概率分布.
随机试题
关于淋病下列描述错误的是
链霉素引起的永久性耳聋属于
气滞痛的特点是
绒癌常见的转移部位是()。
根据上海证券交易所可转换公司债券上市交易规则,转股申请可以撤单。()
把人力资源规划划分为战略性人力资源规划和战术性人力资源规划的依据是()。
公民张某是某高校教授,2009年取得以下各项收入:(1)该企业实行年薪制,张某每月取得工资3000元,12月取得年终效益工资64000元和生育津贴780元;(2)4月份出版一本专著,取得稿酬40000元,李某当即拿出10000元通过民政部门
一学生在课堂上玩手机,老师劝阻无效后,气愤地夺过手机摔在地上。问题:请从建立良好的师生关系的角度,谈谈你对此事的看法。
下列不属于学习策略中精细加工策略的是()。
【2014年山东东营.多选】下列教学活动中,属于学校进行德育教育的有()。
最新回复
(
0
)