首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P[x]2={f(x)=a0+a1x+a2x2|ai∈P,i=1,2,3}对多项式的加法与数乘运算构成P上的3维线性空间. (1)证明:x2+x,x2一x,x+1是P[x]2的一个基. (2)求2x2+7x+3在此基下的坐标.
已知P[x]2={f(x)=a0+a1x+a2x2|ai∈P,i=1,2,3}对多项式的加法与数乘运算构成P上的3维线性空间. (1)证明:x2+x,x2一x,x+1是P[x]2的一个基. (2)求2x2+7x+3在此基下的坐标.
admin
2020-09-25
79
问题
已知P[x]
2
={f(x)=a
0
+a
1
x+a
2
x
2
|a
i
∈P,i=1,2,3}对多项式的加法与数乘运算构成P上的3维线性空间.
(1)证明:x
2
+x,x
2
一x,x+1是P[x]
2
的一个基.
(2)求2x
2
+7x+3在此基下的坐标.
选项
答案
(1)在P[x]
2
中任取一个多项式f(x)=a
0
+a
1
x+a
2
x
2
,设 a
0
+a
1
x+a
2
x
2
=l
1
(x
2
+x)+l
2
(x
2
一x)+l
3
(x+1), 整理可得(l
1
+l
2
)x
2
+(l
1
一l
2
+l
3
)x+l
3
=a
2
x
2
+a
1
x+a
0
, 从而有方程组 [*] 其系数行列式[*]=一2≠0,从而可得方程组有唯一解, 解得l
1
=[*](a
2
+a
1
一a
0
),l
2
=[*](a
2
一a
1
+a
0
),l
3
=a
0
. ① 所以f(x)可由x
2
+x,x
2
-x,x+1唯一线性表示. 所以方程k
1
(x
2
+x)+k
2
(x
2
一x)+k
3
(x+1)=0仅有零解,所以x
2
+x,x
2
一x,x+1 线性无关.故x
2
+x,x
2
一x,x+1是P[x]
2
的一个基. (2)设2x
2
+7x+3=l
1
(x
2
+x)+l
2
(x
2
一x)+l
3
(x+1),令a
0
=3,a
1
=7,a
2
=2代入式① 中可得:l
1
=3,l
2
=一1,l
3
=3. 所以2x
2
+7x+3=3(x
2
+x)一(x
2
一x)+3(x+1). 从而2x
2
+7x+3在基x
2
+x,x
2
一x,x+1下的坐标为(3,一1,3)
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/NWx4777K
0
考研数学三
相关试题推荐
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
设A=,B为三阶非零矩阵,且AB=0,则r(A)=__________.
设A=,B是3阶非零矩阵,且AB=O,则a=________
已知X=AX+B,其中求矩阵X.
(2013年)当x→0时,1一cosx.cos2x.cos3x与axn为等价无穷小,求n与a的值.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
[2003年]设F(x)=f(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f/(x)=g(x),g’(x)=f(x),且f(0)=0,f(x)+g(x)=2x.求出F(x)的表达式.
线性方程组的通解可以表不为
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
设X1,X2,…,Xn是来自总体X的简单随机样本,其均值和方差分别为X与S2,且X~B(1,p),0<P<1.(I)试求:X的概率分布;(Ⅱ)证明:
随机试题
关于临床试验的说法正确的是
王某,女,36岁。膝、踝关节疼痛,时轻时重,关节肿大,压痛,曲伸不利,皮下结节。舌质紫黯,苔白腻,脉细涩。实验室检查:抗"O">500U,C反应蛋白阳性。血常规示白细胞计数轻度升高,中性粒细胞稍增多。诊断为"风湿热",治宜选用
对首营品种合法性及质量情况的审核包括
Carlson的营养状况指数法预测富营养化,其认为湖泊中总磷与()之间存在一定的关系。
在工程项目投资建设各阶段中,资源消耗量最大的是项目()阶段。
分析和论证建设工程项目进度目标的目的是分析和论证()。
汤姆洗衣公司是一家从事洗衣行业的老公司,该公司既无正式的工资结构体系,也没有制定工资率或使用薪酬因素,工资水平同周围社会的平均水平持平。汤姆在制定工资制度时,并未进行正式的薪水调查。他几乎每天都在阅读求职广告,并通过他在当地洗衣工和清洁协会的朋友进行非正式
下列选项中,()属于政府的公共服务职能。
正卒、戍卒
TheDifferencebetweenManandComputerWhatmakespeopledifferentfromcomputerprograms?Whatisthemissingelementthat
最新回复
(
0
)