首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2017-12-29
64
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是A
n
λ=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=0,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量λ≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,一2,一2。 因A~Λ,则有A+E~Λ+E=[*]所以r(A+E)=r(Λ+E)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/NmX4777K
0
考研数学三
相关试题推荐
|A|是n阶行列式,其中有一行(或一列)元素全是1.证明:这个行列式的全部代数余子式的和等于该行列式的值.
设A是n阶实矩阵,证明:tr(AAT)=0的充分必要条件是A=O.
设矩阵,问k为何值时,存在可逆阵P,使得P-1AP=A,求出P及相应的对角阵.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
变换下列二次积分的积分次序:
设f(x),g(x)在[0,1]上的导数连续,且f(0)=0,f’(x)≥0,g’(x)≥0.证明:对任意a∈[0,1],有∫0ag(x)f’(x)dx+∫01f(x)g’(x)dx≥f(A)g(1).
已知向量组α1,α2,…,αs+1(s>1)线性无关,βi=αi+tαi+1,i=1,2,…,s.证明:向量组β1,β2,…,βs线性无关.
设,求实对称矩阵B,使A=B2.
设A为3阶矩阵,λ1,λ2,λ3是A的三个不同特征值,对应的特征向量为α1,α2,α3,令β=α1+α2+α3.若A3β=Aβ,求秩r(A—E)及行列式|A+2E|.
设函数f(x)(x≥0)可微,且f(x)>0。将曲线y=f(x),x=1,x=a(a>1)及x轴所围成的平面图形绕x轴旋转一周得旋转体体积为,求:(I)f(x)的表达式;(Ⅱ)f(x)的极值。
随机试题
计算下列不定积分:
工业革命以后。欧洲工业国家为了解决社会问题,对原有的社会经济和福利制度进行了改革,实行了一系列新的制度和措施。其中最著名的有()
下列关于集权和分权的问题,说法正确的有( )
患者,男性,20岁。因“突起高热3天,昏迷、抽搐1天”以“流行性乙型脑炎”收治入院。查体:T39.8℃;P120次/分;R38次/分,节律不整。对光反应迟钝,肺部可闻及干湿啰音,颈强直(+)。对于该患者最关键的护理措施是
下列内容中,属于单位工程进度计划应包括的有()。
某炼钢厂转炉车间于年底对火灾自动报警系统进行年度检测与维修,按照规定,不同类型能探测器应有()且不小于50只的备品。
一台微机必备的输入输出设备是()。
幼儿自发的游戏会打乱教师的正常教学计划,应该加以限制。
"Anyapplestoday?"Effieaskedcheerfullyatmywindow.Ifollowedhertohertruckandboughtakilo.Oncredit,ofcourse.【C1
Manystudentsfindtheexperienceofattendinguniversitylecturestobeaconfusingandfrustratingexperience.Thelecturersp
最新回复
(
0
)