首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
已知A是三阶实对称矩阵,满足A4+2A3+A2+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
admin
2017-12-29
57
问题
已知A是三阶实对称矩阵,满足A
4
+2A
3
+A
2
+2A=O,且秩r(A)=2,求矩阵A的全部特征值,并求秩r(A+E)。
选项
答案
设λ是矩阵A的任一特征值,α(α≠0)是属于特征值λ的特征向量,则Aα=λα,于是A
n
λ=λ
n
α。用α右乘A
4
+2A
3
+A
2
+2A=0,得(λ
4
+2λ
3
+λ
2
+2λ)α=0。 因为特征向量λ≠0,故λ
4
+2λ
3
+λ
2
+2λ=λ(λ+2)(λ
2
+1)=0。由于实对称矩阵的特征值必是实数,从而矩阵A的特征值是0或一2。 由于实对称矩阵必可相似对角化,且秩r(A)=r(Λ)=2,所以A的特征值是0,一2,一2。 因A~Λ,则有A+E~Λ+E=[*]所以r(A+E)=r(Λ+E)=3。
解析
转载请注明原文地址:https://kaotiyun.com/show/NmX4777K
0
考研数学三
相关试题推荐
已知ξ=[1,1,一1]T是矩阵的一个特征向量.A是否相似于对角阵,说明理由.
设矩阵,矩阵B=(kE+A)2,求对角阵A,与B和A相似,并问k为何值时,B为正定阵.
设矩阵,问k为何值时,存在可逆阵P,使得P-1AP=A,求出P及相应的对角阵.
若[x]表示不超过x的最大整数,则积分∫04[x]dx的值为()
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是________.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β1=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1.讨论向量组β1,β2,…,βs的线性相关性.
设三元非齐次线性方程组的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,一1,1]T,η3+η1=[0,2,0]T,求该非齐次方程的通解.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)(4)F(x)=f(x,y0)在点x0处可微,G(y)=f
设周期函数f(x)在(一∞,+∞)内可导,周期为4,又则曲线y=f(x)在点(5,f(5))处的切线斜率为
随机试题
下列的哪一种心脏病以收缩功能不全心衰为主要特征
A.肺肾气虚B.肺气虚C.脾肺气虚D.心肺气虚E.肾气不固久病咳喘,胸闷心悸,乏力少气,自汗声低,舌淡脉弱。其证候是()
男性患者,64岁,患原发性高血压30年,肾功能不全3年,现尿少,浮肿,血钾为5.6mmol/L,哪类降压药不能应用( )。
A.产生协同作用,增强药效B.延缓或减少耐药性的发生C.形成可溶性复合物,有利于吸收D.改变尿液pH,有利于排泄E.利用药物间的拮抗作用,克服药物的不良反应吗啡与阿托品联合使用可()。
主持调节血量的脏是主持统摄血液的脏是
一个合同被法院确认为可撤销合同。甲、乙双方约定的违约金为4万元,合同履行阶段双方各受到了2万元的经济损失。法院判定双方都有过错,但甲方是主要过错方,应承担75%的过错责任。则损失的承担应为( )。
下列几种工程项目组织管理模式中,工程造价控制难度较大的模式是()。
秦始皇陵陵园的东部设有寝殿,开帝陵设寝的先例。()
在科技界也同样存在着性别歧视,《科技时报》报道,在过去的二十年间,女性从事科技工作的人数虽然有所增长,但是在各类科技奖项的评选中,男女获奖比例仅为12:1。以下哪项对上述表面上的矛盾做出了最恰当的解释?
(46)Itisknownthatthebrainshrinksasthebodyages,buttheeffectsonmentalabilityaredifferentfrompersontoperson.
最新回复
(
0
)