首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值是___________.
设A为n阶矩阵,|A|≠0,A*为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A*)2+E必有特征值是___________.
admin
2018-08-03
50
问题
设A为n阶矩阵,|A|≠0,A
*
为A的伴随矩阵,E为n阶单位矩阵.若A有特征值λ,则(A
*
)
2
+E必有特征值是___________.
选项
答案
([*])
2
+1.
解析
因λ为A的特征值,故存在非零列向量X,使
AX=λX
两端左乘A
*
并利用A
*
A=|A|E,得
|A|X=λA
*
X
因为A可逆,故λ≠0,两端同乘
,得
A
*
X=
两端左乘A
*
,得
(A
*
)
2
X=
两端同加X,得
E(A
*
)
2
+E]X=[(
)
*
+1]X
由定义即知(
)
*
+1为(A
*
)
2
+E的一个特征值.
转载请注明原文地址:https://kaotiyun.com/show/Nug4777K
0
考研数学一
相关试题推荐
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设A,B分别为m×n及n×s阶矩阵,且AB=O.证明:r(A)+r(B)≤n.
设A=(aij)n×n是非零矩阵,且|A|中每个元素aij与其代数余子式Aij相等.证明:|A|≠0.
设A为m×n阶矩阵,且r(A)=m<n,则().
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
已知总体X服从参数为p(0<p<1)的几何分布:P{X=x}=(1一p)x-1p(x=1,2,…),X1,…,Xn是来自总体X的简单随机样本,则未知参数p的矩估计量为____________;最大似然估计量为____________.
设三元二次型xTAx=+2x1x2—2x2x3—2ax1x3的正、负惯性指数都是1,(Ⅰ)求a的值,并用正交变换化二次型为标准形;(Ⅱ)如B=A3一5A+E,求二次型xTBx的规范形.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
随机试题
在借贷记账法下,账户的借方登记()。
母乳喂养儿粪便中主要的细菌是
对于重要的资产负债表日后非调整事项,应披露其()。
企业发放股票股利将使同期每股收益下降。()
用内插法计算某方案的内部收益率认为方案可行的话,该方案的实际收益率大于投资人期望的报酬率,该方案可行。()
某超市购人每瓶200毫升和500毫升两种规格的沐浴露各若干箱,200毫升沐浴露每箱20瓶,500毫升沐浴露每箱12瓶。定价分别为14元/瓶和25元/瓶。货品卖完后,发现两种规格沐浴露的销售收入相同,那么这批沐浴露中,200毫升的最少有几箱?(
康老师经常在班上开展“成语知识竞赛”“演讲赛”“辩论赛”等活动,营造运用语文知识的情境,康老师的做法有利于()。
西甲公司与英超公司签订有偿委托合同,由西甲公司委托英超公司采购200台空调,并预先支付购买空调的费用30万元。英超公司经考察发现A公司有一批物美价廉的空调,遂以自己的名义与A公司签订了一份空调购买合同,双方在合同中约定:英超公司从A公司购进200台空调,总
[A]PhysicalChanges[B]LowSelf-Esteem[C]EmergingIndependenceandSearchforIdentity[D]EmotionalTurbulence
AsurveyshowedthatAmericanwomenaremoreconcernedaboutlosingweightthantheyareabout【B1】______cancer,heartdiseaseor
最新回复
(
0
)