首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足A2=E,试证 r(A+E)+r(A-E)=n.
设n阶矩阵A满足A2=E,试证 r(A+E)+r(A-E)=n.
admin
2021-02-25
39
问题
设n阶矩阵A满足A
2
=E,试证
r(A+E)+r(A-E)=n.
选项
答案
由A
2
=E,得(A+E)(A-E)=O,于是 0=r[(A+E)(A-E)]≥r(A+E)+r(A-E)-n=r(A+E)+r(E-A)-n≥r(A+E+E-A)-n=r(2E)-n=0, 故 r(A+E)+r(A-E)=n.
解析
本题考查求秩公式r(AB)≥r(A)+r(B)-n.
转载请注明原文地址:https://kaotiyun.com/show/O484777K
0
考研数学二
相关试题推荐
设z=f(2x一y)+g(x,xy),其中函数f(t)二阶可导,g(u,υ)具有连续二阶偏导数,求
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设三阶实对称矩阵A的特征值为λ1=1,λ2=一1,λ3=0;对应λ1,λ2的特征向量依次为P1=(1,2,2)T,P2=(2,1,一2)T,求A。
下列矩阵中,正定矩阵是()
设3维向量组α1,α2线性无关,β1,β2线性无关.(Ⅰ)证明:存在非零3维向量ξ,ξ既可由α1,α2线性表出,也可由β1,β2线性表出;(Ⅱ)若α1=(1,-2,3)T,α2=(2,1,1)T,β1=(-2,1,4)T,β2=(-5,-3,5)T.求
已知向量组α1,α2,α3和β1,β2,β3,β4都是4维实向量,其中r(α1,α2,α3)=2,r(β1,β2,β3,β4)>1,并且每个βi与α1,α2,α3都正交.则r(β1,β2,β3,β4)=
设3阶矩阵A=(α1,α2.α3)有3个不同的特征值,且α3=α1+2α2.证明:r(A)=2;
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α1+α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为____________.
设A、B为3阶方阵且A-1BA=6A+BA,则矩阵B=_______.
随机试题
痛风的诊断条件是
A、木通科B、豆科C、毛茛科D、马兜铃科E、茜草科鸡血藤来源于
某水利建筑安装工程的建筑工程单价计算中,直接费为Ⅰ,材料补差费为Ⅱ,间接费为Ⅲ,企业利润为Ⅳ,已知税金的费率为λ,则税金为()。
《会计法》中所指的会计报表既包括单位对外提供的会计报表,也包括单位根据管理需要编制的仅供内部管理使用的会计报表。()
列入《进口商品安全质量许可制度目录》内的进口商品必须取得( )的进口安全质量许可方可进口。
如上期财务报表未经审计,注册会计师一般可以通过对其本期变化结果实施的审计程序来获取()的期初余额的审计证据。
课程有多种类型,综合课程就是活动课程。()
我国古代绘画常用朱红色、青色,故称画为“丹青”。()
根据专家推断,2006年内人民币将升值3%左右,按4月5日外汇市场美元兑人民币汇率的中间价推算,人民币对美元的汇率到2006年年底将跌至多少?()2005年中国的外汇储备增幅为()。
【B1】【B3】
最新回复
(
0
)