首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数y=y(x)(0≤x≤2π)由参数方程(0≤t≤2π)确定,它在[0,2π]连续,(0,2π)可导. (Ⅰ)求y=y(x)的单调性区间与凹凸性区间. (Ⅱ)设该参数方程确定的曲线L的形心为。
设函数y=y(x)(0≤x≤2π)由参数方程(0≤t≤2π)确定,它在[0,2π]连续,(0,2π)可导. (Ⅰ)求y=y(x)的单调性区间与凹凸性区间. (Ⅱ)设该参数方程确定的曲线L的形心为。
admin
2020-04-21
79
问题
设函数y=y(x)(0≤x≤2π)由参数方程
(0≤t≤2π)确定,它在[0,2π]连续,(0,2π)可导.
(Ⅰ)求y=y(x)的单调性区间与凹凸性区间.
(Ⅱ)设该参数方程确定的曲线L的形心为
。
选项
答案
(Ⅰ)由参数式求导法有 [*] (t∈(0,2π),即x∈(0,2π)),所以y=y(x)在[0,2π]是凸函数. (Ⅱ)按求曲线的形心公式 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/O684777K
0
考研数学二
相关试题推荐
设A是m×n矩阵,B是n×m矩阵,则().
[20l1年]设向量组α1=[1,0,1]T,α2=[0,1,1]T,α3=[1,3,5]T不能由向量组β1=[1,l,1,]T,β2=[1,2,3]T,β3=[3,4,a]T线性表示.将β1,β2,β3用α1,α2,α3线性表示.
[2005年]设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是().
设有n元实二次型f(x1,x2,…,xn)=(x1+a1x2)2+(x2+a2x3)+…+(xn-1+an-1xn)2+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,该二次型为正定二次型.
[2007年]设矩阵,则A与B().
已知齐次线性方程组同解,求a,b,c的值.
设有方程y’+P(x)y=x2,其中P(x)=试求在(一∞,+∞)内的连续函数y=y(x),使之在(一∞,1)和(1,+∞)内都满足方程,且满足初值条件y(0)=2.
在xOy坐标平面上,连续曲线L过点M(1,0),其上任意点P(x,y)(x≠0)处的切线斜率与直线OP的斜率之差等于ax(常数a>0).(1)求L的方程;(2)当L与直线y=ax所围成平面图形的面积为时,确定a的值.
求二元函数z=f(x,y)=x2y(4一x一y)在由直线x+y=6,x轴和y轴所围成的闭合区域D上的极值、最大值与最小值.
(1999年)设f(χ)是区间[0,+∞)上单调减少且非负的连续函数,a1=f(k)-∫1nf(χ)dχ(n=1,2,…),证明数列{an}的极限存在.
随机试题
Fromchildhoodtooldage,wealluselanguageasameansofbroadeningourknowledgeofourselvesandtheworldaboutus.When
A、发汗解表,宣肺平喘B、发汗解肌,温经通脉C、发汗解表,行气宽中D、发汗解表,温肺止咳E、发汗解表,化湿和中紫苏的功效是()
甲公司分立为乙丙两公司,约定由乙公司承担甲公司全部债务的清偿责任,丙公司继受甲公司全部债权。关于该协议的效力,下列哪一选项是正确的?(卷三2009年真题试卷第3题题)
细水雾灭火系统供水设施主要包括泵组、储水箱、储水瓶组与储气瓶组,下列关于储水瓶组与储气瓶组的安装要求不符合国家工程技术标准要求的是()。
航空货运代理公司的服务能够给予方便的当事人有()。
如果你面试成功,你会选择进入哪个岗位?在这个岗位上你会怎么做?
(2013年真题)常言道:“不知者,不为罪。”请结合我国刑法学中的认识错误理论加以辨析。
下列对交换机的描述中,错误的是()。
Atthebeginningofacountry’sriseoutofbackwardnessandpoverty,morewealthdoesmakeadifference.However,citingsurvey
Without______tospecificfactsacriminalprosecutionmaybetotallyfrustrated.
最新回复
(
0
)