首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2008年]设n元线性方程组AX=b,其中 当a为何值时,该方程组有无穷多解,并求通解.
[2008年]设n元线性方程组AX=b,其中 当a为何值时,该方程组有无穷多解,并求通解.
admin
2019-04-08
31
问题
[2008年]设n元线性方程组AX=b,其中
当a为何值时,该方程组有无穷多解,并求通解.
选项
答案
当(n+1)a
n
=0即a=0时,此时增广矩阵[*]和系数矩阵的秩均为n一1<n,故方程组有无穷多组解,且 [*] 可见[*]是含最高阶单位矩阵的矩阵.因n一秩(A)=1,故对应的齐次方程组的基础解系只含一个解向量.由基础解系和特解的简便求法,基础解系和特解分别为 α=[1,0,0,…,0]
T
,η=[0,1,0,…,0]
T
, 故AX=b的通解为X=kα+η,k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/OD04777K
0
考研数学一
相关试题推荐
矩阵相似的充分必要条件为()
设矩阵()
已知非齐次线性方程组有三个线性无关的解。(Ⅰ)证明方程组系数矩阵A的秩r(A)=2;(Ⅱ)求a,b的值及方程组的通解。
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是()
已知齐次线性方程组=有非零解,且矩阵是正定矩阵.(1)求a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(x1,x2,x3)T∈R3.
设α1,α2,…,αs为线性方程组Ax=0的一个基础解系,β1=t1α1+t2β2,β2=t1α2+t2α3,…,βs=t1αs+t2α1,其中t1,t2为实常数.试问t1,t2满足什么关系时,β1,β2,…,βs也为Ax=0的一个基础解系.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
设A是m×n阶矩阵,且非齐次线性方程组AX=b满足r(A)=r()=r<n.证明:方程组AX=b的线性无关的解向量的个数最多是n-r+1个.
随机试题
现代领导观念的基本特征。
诊断肺心病早期的主要依据是下列哪项
下列表述中,不正确的是()。
目前常用的互联网接入方式有()。
市场营销组合中,可以控制的营销因素有()。
入住饭店后,地陪应向全团旅游者重申当天或第二天的日程安排,包括()。
一个社会的文化及其传统,在很大程度上决定着这个社会的精神面貌,没有和谐的文化,就没有和谐的社会。在当今中国,建设和谐文化,就是建设社会主义先进文化。这个文化以社会主义意识形态为核心,继承发扬中华民族“和”、“合”文化传统,吸收借鉴世界优秀的文明成果,立足当
观:看
窗体上有一个名为List1的列表框和一个名为Command1的命令按钮,并有下面的事件过程:PrivateSubCommand1_Click() n%=List1.ListIndex Ifn>0Then ch$=List1.Lis
Untilthen,hisfamily______fromhimforsixmonths.
最新回复
(
0
)