首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关, 令 (Ⅰ)证明:β可由α1,α2,α3唯一线性表示; (Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关, 令 (Ⅰ)证明:β可由α1,α2,α3唯一线性表示; (Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
admin
2021-03-10
392
问题
设α
1
,α
2
,α
3
为两两正交的单位向量,又β≠0且α
1
,α
2
,α
3
,β线性相关,
令
(Ⅰ)证明:β可由α
1
,α
2
,α
3
唯一线性表示;
(Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
选项
答案
(Ⅰ)因为α
1
,α
2
,α
3
为两两正交的单位向量,所以α
1
,α
2
,α
3
线性无关,又因为α
1
,α
2
,α
3
,β线性相关,令β=k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
α
1
+l
2
α
2
+l
3
α
3
, 得(k
1
-l
1
)α
1
+(k
2
-l
2
)α
2
+(k
3
-l
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以k
1
-l
1
=0,k
2
-l
2
=0,k
3
-l
3
=0,即k
1
=l
1
,k
2
=l
2
,k
3
-l
3
, 所以β可由α
1
,α
2
,α
3
唯一线性表示. (Ⅱ)设β=k
1
α
1
+k
2
α
2
+k
3
α
3
,即β=(α
1
,α
2
,α
3
)[*](其中k
1
,k
2
,k
3
唯一)。 则Aβ=(α
1
,α
2
,α
3
)[*] 因为α
1
,α
2
,α
3
两两正交且为单位向量,所以[*](α
1
,α
2
,α
3
)=E, 从而Aβ=(α
1
,α
2
,α
3
)[*] 于是β是矩阵A的属于特征值1的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/OK84777K
0
考研数学二
相关试题推荐
(13年)设函数f(x)=lnx+(I)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+存在.并求此极限.
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成.求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
设f(x)在区间[-a,a](a>0)上具有二阶连续导数,f(0)=0。证明在[-a,a]上至少存在一点η,使a3f"(η)=3∫-aaf(x)dx。
(00)设A=αβT,B=βTα,其中βT是β的转置.求解方程2B2A2x=A4x+B4x+y
设A=,正交矩阵Q使得QTAQ为对角矩阵,若Q的第一列为(1,2,1)T,求a,Q。
设矩阵A=的特征方程有一个二重根,求a的值。并讨论A是否可相似对角化。
微分方程xy’+y=0满足初始条件y(1)=2的特解为_________。
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,c,d为常数)()
矩形闸门宽a米,高h米,垂直放在水中,上边与水面相齐,闸门压力为().
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求A的特征值与特征向最;
随机试题
慢性肾盂肾炎患者,尿菌已阴性,为防止复发,应采取的措施是
女,45岁,甲状腺肿大数年,检查发现甲状腺弥漫性肿大,表面颗粒状,质中偏硬
下列选项中关于行政复议范围的说法正确的是()。
奉行产品观念的企业,其行为表现为()。
可吸入颗粒物指()。
某类原材料库存量为10吨,据鉴定,因变质约有20%要报废,此类材料的采购价和入库费为每吨4000元,评估时该原材料的市价和入库费比购进时上升30%,此类库存原材料的评估价值为()。
甲公司为上市公司,内审部门在审核公司2014年度财务报表时,对以下交易或事项的会计处理提出质疑。(1)2014年6月26日,甲公司与A公司签订土地经营租赁协议。协议约定,甲公司从A公司租入一块土地用于建设商品库房;该土地租赁期限为10年,自2014年7月
行政管理活动的出发点和归宿是()。
汉字的优点是否即是一切象形文字的优点呢?笔者认为,汉字决非仅仅是象形文字。汉字不仅具象(象形),而且有想象(形声、会意、转注)和抽象(指事、假借)。古人的“六书”法则早就指出了这一点。汉字是兼具象、想象与抽象三者为一体的艺术化文字。这恰恰道出了汉字永存于世
【B1】【B6】
最新回复
(
0
)