首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关, 令 (Ⅰ)证明:β可由α1,α2,α3唯一线性表示; (Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关, 令 (Ⅰ)证明:β可由α1,α2,α3唯一线性表示; (Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
admin
2021-03-10
104
问题
设α
1
,α
2
,α
3
为两两正交的单位向量,又β≠0且α
1
,α
2
,α
3
,β线性相关,
令
(Ⅰ)证明:β可由α
1
,α
2
,α
3
唯一线性表示;
(Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
选项
答案
(Ⅰ)因为α
1
,α
2
,α
3
为两两正交的单位向量,所以α
1
,α
2
,α
3
线性无关,又因为α
1
,α
2
,α
3
,β线性相关,令β=k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
α
1
+l
2
α
2
+l
3
α
3
, 得(k
1
-l
1
)α
1
+(k
2
-l
2
)α
2
+(k
3
-l
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以k
1
-l
1
=0,k
2
-l
2
=0,k
3
-l
3
=0,即k
1
=l
1
,k
2
=l
2
,k
3
-l
3
, 所以β可由α
1
,α
2
,α
3
唯一线性表示. (Ⅱ)设β=k
1
α
1
+k
2
α
2
+k
3
α
3
,即β=(α
1
,α
2
,α
3
)[*](其中k
1
,k
2
,k
3
唯一)。 则Aβ=(α
1
,α
2
,α
3
)[*] 因为α
1
,α
2
,α
3
两两正交且为单位向量,所以[*](α
1
,α
2
,α
3
)=E, 从而Aβ=(α
1
,α
2
,α
3
)[*] 于是β是矩阵A的属于特征值1的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/OK84777K
0
考研数学二
相关试题推荐
(2013年)当χ→0时,1-cosχ.cos2χ.cos3χ与aχn为等价无穷小,求n与a的值.
(1994年)设f(χ)在[0,1]上连续且递减,证明:当0<λ<1时,∫0λf(χ)dχ≥λ∫01f(χ)dχ.
(1998年试题,十三)已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,一1,α)T,β=(3,10,6,4)T,问:(1)a,b取何值时,β不能由α1,α2,α3线性表示?(2)a,b取何值时,β可由α1,α2,α3线性表
设D为不等式0≤x≤3,0≤y≤1所确定的区域,则min{x,y}dxdy=________。
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是____________.
设z=xg(x+y)+yφ(xy),其中g,φ具有二阶连续导数,则=__________.
设常数k>0,函数在(0,+∞)内零点个数为()
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为()
设y=f(χ,y),其中t是由G(χ,y,t)=0确定的χ,y的函数,且f(χ,t),G(χ,y,t)一阶连续可偏导,求.
(2011年试题,21)A为三阶实对称矩阵,A的秩为2,即rA=2,且求A的特征值与特征向最;
随机试题
缔约国就发展贸易关系中某项具体问题所达成的书面协议,是为补充解释修改而签订,该协议为()
()是由若干判断得出一个判断的思维形式。
患者女性,34岁,X线检查示右肺大面积实变,右肺查体不可能出现的体征是
皮肤紫纹是由于大量皮质醇促进蛋白质分解,抑制蛋白质合成,使机体处于负氮平衡状态所致。
下列各项咨询业务中,不属于注册咨询工程师(投资)执业范围的是()。
在下列关于对财务信息执行商定程序的说法中,正确的是( )。注册会计师执行的商定程序业务与执行鉴证业务存在很多方面的不同,其中包括( )。
A注册会计师计划测试X公司2014年销售交易是否真实。下列实质性程序获取的审计证据中,与证明销售交易的真实性最相关的是()。
关于“节约”正确的说法有()。
Entrepreneursareeverybody’sdarlingsthesedays.Theymaybesmall,buttheyareinnovative.Andinnovation,weareassured,i
A、Mr.Smithhassignedthecontract.B、Mr.SmithisunavailabletillThursday.C、Themanshouldhavecalledbeforethevisit.D、
最新回复
(
0
)