首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关, 令 (Ⅰ)证明:β可由α1,α2,α3唯一线性表示; (Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
设α1,α2,α3为两两正交的单位向量,又β≠0且α1,α2,α3,β线性相关, 令 (Ⅰ)证明:β可由α1,α2,α3唯一线性表示; (Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
admin
2021-03-10
80
问题
设α
1
,α
2
,α
3
为两两正交的单位向量,又β≠0且α
1
,α
2
,α
3
,β线性相关,
令
(Ⅰ)证明:β可由α
1
,α
2
,α
3
唯一线性表示;
(Ⅱ)验证β为矩阵A的特征向量,并求相应的特征值.
选项
答案
(Ⅰ)因为α
1
,α
2
,α
3
为两两正交的单位向量,所以α
1
,α
2
,α
3
线性无关,又因为α
1
,α
2
,α
3
,β线性相关,令β=k
1
α
1
+k
2
α
2
+k
3
α
3
=l
1
α
1
+l
2
α
2
+l
3
α
3
, 得(k
1
-l
1
)α
1
+(k
2
-l
2
)α
2
+(k
3
-l
3
)α
3
=0, 因为α
1
,α
2
,α
3
线性无关,所以k
1
-l
1
=0,k
2
-l
2
=0,k
3
-l
3
=0,即k
1
=l
1
,k
2
=l
2
,k
3
-l
3
, 所以β可由α
1
,α
2
,α
3
唯一线性表示. (Ⅱ)设β=k
1
α
1
+k
2
α
2
+k
3
α
3
,即β=(α
1
,α
2
,α
3
)[*](其中k
1
,k
2
,k
3
唯一)。 则Aβ=(α
1
,α
2
,α
3
)[*] 因为α
1
,α
2
,α
3
两两正交且为单位向量,所以[*](α
1
,α
2
,α
3
)=E, 从而Aβ=(α
1
,α
2
,α
3
)[*] 于是β是矩阵A的属于特征值1的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/OK84777K
0
考研数学二
相关试题推荐
(2010年)求函数f(χ)=的单调区间与极值.
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式。(1)求导数f(x);(2)证明:当x≥0时,不等式e-x≤f(x)≤1成立.
(2006年试题,16)求不定积分
过点(0,1)作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成.求区域D的面积及D绕x轴旋转一周所得旋转体的体积.
(2005年)已知函数f(χ)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1.证明:(Ⅰ)存在ξ∈(0,1),使得f(ξ)=1-ξ;(Ⅱ)存在两个不同的点η,ζ∈(0,1),使得f′(η)f′(ζ)=1.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数),在区间(1/2,1)内有且仅有一个实根;(2)记(1)中的实根为xn,证明存在,并求此极限.
(2003年)设函数问a为何值时,f(χ)在χ=0处连续;a为何值时,χ=0是f(χ)的可去间断点?
(2003年)设位于第一象限的曲线y=f(χ)过点,其上任一点P(χ,y)处的法线与y轴的交点为Q,且线段PQ被χ轴平分.(1)求曲线y=f(χ)的方程;(2)已知曲线y=sinχ在[0,π]上的弧长为l,试用l表示曲线y=f(χ)的弧
设A,B均为n阶矩阵,|A|=2,|B|=-3,则|2A*B-1|=_______.
求下列方程通解或满足给定初始条件的特解:1)y+1=χeχ+y.2)χ+χ+sin(χ+y)=03)y′+ytanχ=cosχ4)(1+χ)y〞+y′=05)yy〞-(y′)2=y4,y(0)=1,y′(0
随机试题
A、Bymakinglaws.B、Byenforcingdiscipline.C、Byeducatingthepublic.D、Byholdingceremonies.A
患者,女性,25岁。车祸导致胸部损伤,多根肋骨多处骨折,急诊入院。查体:吸气时,胸壁内陷;呼气时,该区胸壁向外鼓出的原因是()
有关压力管道的说法正确的是()。
发行对象为境外战略投资者的,应当经证监会事先批准。()
下列属于连续口令的是()。
()对于血液循环相当于引擎对于()
已知曲线L:y=x2(0≤x≤),则∫Lxds=___________。
下列软件中,不是操作系统的是()。
Whydidthepoliceofficerstopthedriver?
HowtoGetPreservedasaFossil56.Unfortunatelythechangesofanyanimalbecomeafossilarenotverygreat,and57.the
最新回复
(
0
)