首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
admin
2019-08-01
103
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故秩r(A)<3,从而|A|=一 (a一1)
2
(a+2)=0,所以a=1或a=一2. 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,但β
2
=(一2,1,4)
T
不能由α
1
,α
2
,α
3
线性表示,所以a=1符合题意. 当a=一2时,由下列矩阵的初等行变换 [*] 知秩r(B)=2,秩r(B|α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意,因此a=1. 记A= (α
1
,α
2
,α
3
),B= (β
1
,β
2
,β
3
),对矩阵(A|B)施行初等行变换: [*] 由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故r(A)<3,因此a=1或a=一2. 当a=1时,由下列矩阵的初等行变换 [*] 知秩r(A)=1,秩r(A|β
2
)=2,故方程组Ax=β
2
无解,所以β
2
不能由α
1
,α
2
,α
3
线性表示.另一方面,由于|B|=一9≠0,故Bx=α
i
(i=1,2,3)有惟一解,即α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,所以a=1符合题意. 当a=一2时,由下列矩阵的初等行变换 [*] 可知秩r(B)=2,秩r(B|α
2
)=3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意,因此a=1. 记矩阵A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
).由于|B|=(a+2)(a一4),故当a≠一2且a≠4时,方程组Bx=a
j
(j=1,2,3)有解,即向量组α
1
,α
2
,α
3
可由向量组β
1
,β
2
,β
3
线性表示,当a=一2时,由初等行变换 [*] 知r(B)=2,而r(B |α
2
)一3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意. 同理可知a=4不符合题意. 由题意知方程组Ax=β
j
(j=1,2,3)不全有解,故必有|A|=一(a一1)
2
(a+2)=0,所以a=1或a=一2,前已说明a=一2不符合题意,所以,只有a=1可能符合题意. 当a=1时,由初等行变换 [*] 知r(A)=1,而r(A|β
2
)=2,故方程组Ax=β
2
无解,即β
2
不能由α
1
,α
2
,α
3
线性表示.综上所述,可知只有a=1符合题意.
解析
转载请注明原文地址:https://kaotiyun.com/show/VJN4777K
0
考研数学二
相关试题推荐
设f(x)二阶连续可导,且=0,f’’(0)=4,则=____.
设讨论y=f[g(x)]的连续性,若有间断点并指出类型.
求函数y=x+的单调区间、极值点及其图形的凹凸区间与拐点.
设A是m×n矩阵.证明:r(A)=1存在m维和n维非零列向量α和β,使得A=αβT.
已知一条抛物线通过x轴上两点A(1,0),8(3,0),求证:两坐标轴与该抛物线所围成的面积等于x轴与该抛物线所围成的面积.
已知A=是正定矩阵,证明△=>0.
设数列{xn}满足0<x1<1,ln(1+xn)=exn+1一1(n=1,2,…).证明当0<x<1时,ln(1+x)<x<ex一1;
用配方法化二次型f(x1,x2,x3)=x12+x2x3为标准二次型.
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2—4x1x3—8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及正、负惯性指数。
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
随机试题
生闻之,不觉解颐解颐:
手骨病变检查的首选体位是
A.切口分类及愈合记录为"I/甲"B.切口分类及愈合记录为"Ⅲ/丙"C.切口分类及愈合记录为"Ⅱ/甲"D.切口分类及愈合记录为"Ⅱ/乙"E.切口分类及愈合记录为"Ⅳ/甲"
下列关于人民陪审员制度的说法。正确的有:()
对于土地定着物来说,在同一地域和经济条件下,具有相同使用价值或品质的定着物,其价格具有()。
(2003)钢筋混凝土构件的最小配筋率与以下哪些因素有关?Ⅰ.构件的受力类型;Ⅱ.构件的截面尺寸;Ⅲ.混凝土的强度等级;Ⅳ.钢筋的抗拉强度
下列各项中,属于商业信用筹资方式的是()。(2011年)
20×1年度,甲公司发生的相关交易或事项如下:(1)4月1日,甲公司收到先征后返的所得税240万元。(2)6月30日,甲公司以3000万元的拍卖价格取得一栋已达到预定可使用状态的房屋,该房屋的预计使用年限为50年。当地政府为鼓励甲公司在当地投资,于同日
1952年的一天,农民张大爷看着自己刚刚分到的土地,激动得热泪盈眶。这一情景的出现与下列哪一事件直接有关?()
用户不能直接调用构造方法,只能通过【】关键字自动调用。
最新回复
(
0
)