首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表示.
admin
2019-08-01
96
问题
确定常数a,使向量组α
1
=(1,1,a)
T
,α
2
=(1,a,1)
T
,α
3
=(a,1,1)
T
可由向量组β
1
=(1,1,a)
T
,β
2
=(一2,a,4)
T
,β
3
=(一2,a,a)
T
线性表示,但向量组β
1
,β
2
,β
3
不能由向量组α
1
,α
2
,α
3
线性表示.
选项
答案
记A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
),由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故秩r(A)<3,从而|A|=一 (a一1)
2
(a+2)=0,所以a=1或a=一2. 当a=1时,α
1
=α
2
=α
3
=β
1
=(1,1,1)
T
,故α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,但β
2
=(一2,1,4)
T
不能由α
1
,α
2
,α
3
线性表示,所以a=1符合题意. 当a=一2时,由下列矩阵的初等行变换 [*] 知秩r(B)=2,秩r(B|α
2
)=3,所以方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意,因此a=1. 记A= (α
1
,α
2
,α
3
),B= (β
1
,β
2
,β
3
),对矩阵(A|B)施行初等行变换: [*] 由于β
1
,β
2
,β
3
不能由α
1
,α
2
,α
3
线性表示,故r(A)<3,因此a=1或a=一2. 当a=1时,由下列矩阵的初等行变换 [*] 知秩r(A)=1,秩r(A|β
2
)=2,故方程组Ax=β
2
无解,所以β
2
不能由α
1
,α
2
,α
3
线性表示.另一方面,由于|B|=一9≠0,故Bx=α
i
(i=1,2,3)有惟一解,即α
1
,α
2
,α
3
可由β
1
,β
2
,β
3
线性表示,所以a=1符合题意. 当a=一2时,由下列矩阵的初等行变换 [*] 可知秩r(B)=2,秩r(B|α
2
)=3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意,因此a=1. 记矩阵A=(α
1
,α
2
,α
3
),B=(β
1
,β
2
,β
3
).由于|B|=(a+2)(a一4),故当a≠一2且a≠4时,方程组Bx=a
j
(j=1,2,3)有解,即向量组α
1
,α
2
,α
3
可由向量组β
1
,β
2
,β
3
线性表示,当a=一2时,由初等行变换 [*] 知r(B)=2,而r(B |α
2
)一3,故方程组Bx=α
2
无解,即α
2
不能由β
1
,β
2
,β
3
线性表示,故a=一2不符合题意. 同理可知a=4不符合题意. 由题意知方程组Ax=β
j
(j=1,2,3)不全有解,故必有|A|=一(a一1)
2
(a+2)=0,所以a=1或a=一2,前已说明a=一2不符合题意,所以,只有a=1可能符合题意. 当a=1时,由初等行变换 [*] 知r(A)=1,而r(A|β
2
)=2,故方程组Ax=β
2
无解,即β
2
不能由α
1
,α
2
,α
3
线性表示.综上所述,可知只有a=1符合题意.
解析
转载请注明原文地址:https://kaotiyun.com/show/VJN4777K
0
考研数学二
相关试题推荐
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设F(x)=∫xx+2πesintsintdt,则F(x)().
设函数其中g(x)二阶连续可导,且g(0)=1.(1)确定常数a,使得f(x)在x=0处连续;(2)求f’(x);(3)讨论f’(x)在x=0处的连续性.
设f(x)在x=2处连续,且,则曲线y=f(x)在(2,f(2))处的切线方程为__________.
设f(x)为连续正值函数,x∈[0,+∞),若平面区域Rt={(x,y)|0≤x≤t,0≤y≤f(x)}(t>0)的形心纵坐标等于曲线y=f(x)在[0,t]上对应的曲边梯形面积与之和,求f(x).
(Ⅰ)设f(x),g(x)在点x=x0处可导且f(x0)=g(x0)=0,f′(x0)g′(x0)<0,求证:x=x0是f(x)g(x)的极大值点.(Ⅱ)求函数F(x)=(x∈(—∞,+∞))的值域区间
[2006年]证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
(2006年)设数列{χn}满足0<χ1<π,χn+1=sinχn(n=1,2,…).(Ⅰ)证明χn存在,并求该极限;(Ⅱ)
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=χ12+2χ22-5χ32+2χ1χ2-2χ1χ3+2χ2χ3.
用配方法化下列二次型为标准形:f(χ1,χ2,χ3)=2χ1χ2+2χ1χ3+6χ2χ3.
随机试题
关于糖原合成的叙述,正确的是
每天需要的总能量应为如采用8%的牛奶,每天应给多少毫升
该单位本年的支出增长率为()。该单位的公用经费支出项月中有()。
乙公司现有生产线已满负荷运转,鉴于其产品在市场上供不应求,公司准备购置一条生产线,公司及生产线的相关资料如下:资料一:乙公司生产线的购置有两个方案可供选择。A方案生产线的购买成本为7200万元,预计使用6年,采用直线法计提折旧,预计净残值率为10%,生
某首饰商城为增值税一般纳税人,2015年10月发生以下业务:(1)零售金银首饰与镀金首饰组成的套装礼盒,取得零售收入30万元,其中金银首饰收入20万元,镀金首饰收入10万元;(2)采取“以旧换新”方式向消费者销售金项链2000条,新项链每条零售价0.3
我国古代诗歌按产生的时代排列,错误的有()。
对于全体人民,_______对于农村贫民,一个很重要的改善,就是孩子上学不花钱。_______让所有孩子上学不花钱,人民_______能不再像现在这样没有文化,_______不再完全没有文化。填入划横线部分最恰当的一项是()。
班杜拉提出自我效能感就是
打开工作簿文件EXC.XLSX,对工作表“产品销售情况表”内数据清单的内弈建市数据透视表,行标签为“分公司”,列标签为“产品名称”,求和项为“销售额(万元)”,并置于现工作表的J6:N20单元格区域,工作表名不变,保存EXC.XLSX工作簿。
TheEarthhasbeenstrippedofupto90%ofitsspeciesfivetimesbeforeinthepast450millionyears.Nowit’sabouttohappe
最新回复
(
0
)