首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分别是
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分别是
admin
2020-03-16
54
问题
(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λ
i
B)x=0的非零解,i=1,2,…,n.证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
(1)用数学归纳法. ①由于特征向量α
1
≠0,故α
1
线性无关; ②假设前k一1个向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.k个互异特征 值λ
1
,λ
2
,…,λ
k
对应着特征向量α
1
,α
2
,…,α
k
现设存在一组数ι
1
,ι
2
,…,ι
k
,使得 ι
1
α
1
+ι
2
α
2
+…+ι
k
α
k
=0. (*) 在(*)式两端左边乘A,有ι
1
Aα
1
+ι
2
Aα
2
+…+ι
k
Aα
k
=0,即 ι
1
λ
1
α
1
+ι
2
λ
2
α
2
+…+ι
k
λ
k
α
k
=0; (**) 又在(*)式两端同时乘λ
k
,有ι
1
λ
k
α
1
+ι
2
λ
k
α
2
+…+ι
k
λ
k
α
k
=0. (***) 用(**)式减去(***)式,得 ι
1
(λ
1
一λ
k
)α
1
+ι
2
(λ
2
—λ
k
)α
2
+…+ι
k-1
(λ
k-1
一λ
k
)α
k-1
=0. 由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故 ι
1
(λ
1
—λ
k
)=ι
2
(λ
2
一λ
k
)=…=ι
k-1
(λ
k-1
一λ
k
)=0, 又λ
i
—λ
k
≠0(i=1,2,…,k一1),故ι
1
=ι
2
=…=ι
k-1
=0. 代回(*)式,于是ι
k
α
k
=0,由α≠0,有ι
k
=0,于是α
1
,α
2
,…,α
k
线性无关,即A的n个互异特征值对应的特征向量α
1
,α
2
,…,α
n
线性无关.证毕. (2)由|B|≠0,在|A一λB|=0两边乘|B
-1
|,有 |B
-1
A一λE|=0,即|λE一B
-1
A|=0, 于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值. 又由(A—λ
i
B)x=0,两端左边乘B
-1
,有(B
-1
A—λ
i
E)x=0,即(λ
i
E—B
-1
A)x=0,故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,由(1)知,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/OKA4777K
0
考研数学二
相关试题推荐
已知函数y(x)由方程x3+y3-3x+3y-2=0确定,求y(x)的极值。
[*]
[2003年]设位于第一象限的曲线y=f(x)过点(√2,1/2),其上任一点P(x,y)处的法线与y轴的交点为Q,且线段PQ被x轴平分.已知曲线y=sinx在[0,π]上的弧长为l,试用l表示曲线y=f(x)的弧长s.
设f(x)是区间上的单调、可导函数,且满足,其中f-1是f的反函数,求f(x).
已知A,B为三阶非零矩阵,且。β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组Bx=0的三个解向量,且Ax=β3有解。求Bx=0的通解。
设(2E—C—1B)AT=C—1,其中E是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求矩阵A。
求下列二重积分:(Ⅰ)I=,其中D为正方形域:0≤x≤1,0≤y≤1;(Ⅱ)I=|3x+4y|dxdy,其中D:x2+y2≤1;(Ⅲ)I=ydxdy,其中D由直线z=-2,y=0,y=2及曲线x=所围成.
有一椭圆形薄板,长半轴为a,短半轴为b,薄板垂直立于水中,而其短半轴与水面相齐,求水对薄板的侧压力.
适当选取函数φ(x),作变量代换y=φ(x)u,将y关于x的微分方程化为u关于x的二阶常系数线性齐次微分方程,求φ(x)及λ并求原方程的通解.
若n阶行列式中零元素的个数多于n2-n,则该行列式的值为________.
随机试题
()
该患者患何病:辨证为:
麻醉前用药中,使用麻醉性镇痛药(吗啡等)的主要目的是
仪表导压管管道连接的方式多采用( )。
当今社会比以往任何社会都更加强调发展人的()
构思:创造:文章()
在红军长征胜利后,中国共产党总结历史经验、加强思想理论建设的主要体现。
辩证唯物主义认为实践是认识发展的动力,这是因为
Thereisanewtypeofsmalladvertisementbecomingincreasinglycommoninnewspaperclassifiedcolumns.Itissometimesplaced
Ifthedisputeisnotsettledina(n)______waysoon,thetwocountrieswillcertainlygotowar.
最新回复
(
0
)