首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分别是
(1)设λ1,λ2,…,λn是n阶矩阵A的互异特征值,α1,α2,…,αn是A的分别对应于这些特征值的特征向量,证明α1,α2,…,αn线性无关; (2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ1,λ2,…,λn互异,αi分别是
admin
2020-03-16
67
问题
(1)设λ
1
,λ
2
,…,λ
n
是n阶矩阵A的互异特征值,α
1
,α
2
,…,α
n
是A的分别对应于这些特征值的特征向量,证明α
1
,α
2
,…,α
n
线性无关;
(2)设A,B为n阶方阵,B≠0,若方程|A一λB|=0的全部根λ
1
,λ
2
,…,λ
n
互异,α
i
分别是方程组(A—λ
i
B)x=0的非零解,i=1,2,…,n.证明α
1
,α
2
,…,α
n
线性无关.
选项
答案
(1)用数学归纳法. ①由于特征向量α
1
≠0,故α
1
线性无关; ②假设前k一1个向量α
1
,α
2
,…,α
k-1
线性无关,以下证明α
1
,α
2
,…,α
k
线性无关.k个互异特征 值λ
1
,λ
2
,…,λ
k
对应着特征向量α
1
,α
2
,…,α
k
现设存在一组数ι
1
,ι
2
,…,ι
k
,使得 ι
1
α
1
+ι
2
α
2
+…+ι
k
α
k
=0. (*) 在(*)式两端左边乘A,有ι
1
Aα
1
+ι
2
Aα
2
+…+ι
k
Aα
k
=0,即 ι
1
λ
1
α
1
+ι
2
λ
2
α
2
+…+ι
k
λ
k
α
k
=0; (**) 又在(*)式两端同时乘λ
k
,有ι
1
λ
k
α
1
+ι
2
λ
k
α
2
+…+ι
k
λ
k
α
k
=0. (***) 用(**)式减去(***)式,得 ι
1
(λ
1
一λ
k
)α
1
+ι
2
(λ
2
—λ
k
)α
2
+…+ι
k-1
(λ
k-1
一λ
k
)α
k-1
=0. 由归纳假设α
1
,α
2
,…,α
k-1
线性无关,故 ι
1
(λ
1
—λ
k
)=ι
2
(λ
2
一λ
k
)=…=ι
k-1
(λ
k-1
一λ
k
)=0, 又λ
i
—λ
k
≠0(i=1,2,…,k一1),故ι
1
=ι
2
=…=ι
k-1
=0. 代回(*)式,于是ι
k
α
k
=0,由α≠0,有ι
k
=0,于是α
1
,α
2
,…,α
k
线性无关,即A的n个互异特征值对应的特征向量α
1
,α
2
,…,α
n
线性无关.证毕. (2)由|B|≠0,在|A一λB|=0两边乘|B
-1
|,有 |B
-1
A一λE|=0,即|λE一B
-1
A|=0, 于是λ
1
,λ
2
,…,λ
n
是矩阵B
-1
A的n个互异特征值. 又由(A—λ
i
B)x=0,两端左边乘B
-1
,有(B
-1
A—λ
i
E)x=0,即(λ
i
E—B
-1
A)x=0,故α
1
,α
2
,…,α
n
为B
-1
A的对应于λ
1
,λ
2
,…,λ
n
的特征向量,由(1)知,α
1
,α
2
,…,α
n
线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/OKA4777K
0
考研数学二
相关试题推荐
[2008年]曲线y=(x一5)x3的拐点坐标为________.
(92年)设f(x)=,求∫03(x-2)dx.
[*]
设非负函数y=y(x)(x≥0)满足微分方程xy"一y’+=0.当曲线y=y(x)过原点时,其与直线x=1及y=0围成的平面区域D的面积为2,求D绕y轴旋转所得旋转体的体积.
设函数f(x)在[1,+∞]上连续,若由曲线y=f(x),直线x=1,x=t(t>1)与x轴所围成的平面图形绕x轴旋转一周所成的旋转体的体积为V(t)=[t2f(t)一f(1)]试求y=f(x)所应满足的微分方程,并求该微分方程满足条件y|x=2=的
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=-ξ1+2ξ2+2ξ3,Aξ2=2ξ1-ξ2-2ξ3,Aξ3=2ξ1-2ξ2-ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
设f(x),g(x)在[a,b]上连续,且g(x)>0.利用闭区间上连续函数的性质,证明:存在一点ξ∈[a,b],使∫abf(x)g(x)=f(ξ)∫abg(x)dx.
没有两条抛物线.记它们交点的横坐标的绝对值为an,(1)求这两条抛物线所围成的平面图形的面积Sn;(2)求级数的和.
证明:连续函数取绝对值后函数仍保持连续性,举例说明可导函数取绝对值不一定保持可导性.
设A是三阶矩阵,且各行元素的和都是5,则矩阵A一定有特征值__________。
随机试题
试述传统社会礼与俗的区别与联系。
患者,女,48岁。干咳、气短4个月余。血沉56mm/h。X线胸片示双侧肺门影增大。胸部HRCT显示:双侧肺门淋巴结肿大,双肺广泛分布1.3mm结节影。PPD(一)。问题2:为进一步明确诊断,有意义的检查是
血清中单一免疫球蛋白异常增高主要见于
上消化道出血可单纯表现为呕血或黑便,也可两者兼有,这取决于
下列药物中,老人应用后可出现眩晕、低血压、手足震颤、心动过速和房室传导阻滞的是()
群桩沉降计算,(建筑地基基础设计规范)(CB50007—2002)推荐的方法是不考虑桩间土的压缩变形对沉降影响的( )。
简论光荣革命。
下列试题基于以下题干:F、G、J、K、L和M六人应聘某个职位。只有被面试才能被聘用。以下条件必须满足:(1)如果面试G,则面试J;(2)如果面试J,则面试L;(3)F被面试;(4)除非面试K,否则不聘用F;(5)除非面试M,否则不聘用K。以
Youmaysaythatthebusinessofmarkingbooksisgoingtoslowdownyourreading.(31)probablywill.That’soneofthe(32)fo
A、Thereisnorush.B、Thewinnerbecomestheking.C、Friendshipfirst,competitionsecond.D、Fasterandstronger.A
最新回复
(
0
)