首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是__________.
四元方程组Ax=b的三个解是α1,α2,α3,其中α1=(1,1,1,1)T,α2+α3=(2,3,4,5)T,如r(A)=3,则方程组Ax=b的通解是__________.
admin
2019-01-05
48
问题
四元方程组Ax=b的三个解是α
1
,α
2
,α
3
,其中α
1
=(1,1,1,1)
T
,α
2
+α
3
=(2,3,4,5)
T
,如r(A)=3,则方程组Ax=b的通解是__________.
选项
答案
(1,1,1,1)
T
+k(0,1,2,3)
T
.
解析
由(α
2
+α
3
)一2α
1
=(α
2
一α
1
)+(α
3
一α
1
)=(2,3,4,5)
T
一2(1,1,1,1)
T
=(0,1,2,3)
T
,知(0,1,2,3)
T
是Ax=0的解.
又秩r(A)=3,n—r(A)=1,所以Ax=b的通解是(1,1,1,1)
T
+k(0,1,2,3)
T
.
转载请注明原文地址:https://kaotiyun.com/show/OMW4777K
0
考研数学三
相关试题推荐
设函数f(x)在x=1的某邻域内连续,且有求f(1)及
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0}f(x)为D上的正值连续函数,a,b为常数,则
设e<a<b<e2,证明ln2b一ln2a>
设函数f(x,y)可微,且对任意x,y都有<0,则使不等式f(x1,y1)<f(x2,y2)成立的一个充分条件是()
A、B、C三个随机事件必相互独立,如果它们满足条件()
已知β1,β2是非齐次线性方程组Ax=b的两个不同的解,α1,α2是对应的齐次线性方程组Ax=0的基础解系,k1,k2为任意常数,则方程组Ax=b的通解是()
已知m个向量α1,…,αm线性相关,但其中任意m—1个向量都线性无关,证明:(Ⅰ)如果等式k1α1+…+kmαm=0成立,则系数k1,…,km或者全为零,或者全不为零;(Ⅱ)如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则
设n阶矩阵A的伴随矩阵A*≠0,若ξ1,ξ2,ξ3,ξ4是非齐次线性方程组Ax=b的互不相等的解,则对应的齐次线性方程组Ax=0的基础解系()
设f(x)二阶可导,f(0)=f(1)=0,且f(x)在[0,1]上的最小值为一1.证明:存在ξ∈(0,1),使得f’’(ξ)≥8.试求曲线L的方程;
从数集{1,2,3,4,5,6}中任意取出一个整数X,用Y表示数集中能整除X的正整数个数,试求:Y的概率分布;
随机试题
关于弥漫性轴索损伤,正确的是
促使肾排钾增多的因素是
食品大肠菌群国家标准检测方法为
施工日志是单位工程在施工过程中对有关施工技术和管理工作的原始记录,是施工活动各方面情况的综合记载。()
中国银行发行次级债补充其附属资本,按《巴塞尔协议》规定,附属资本最高不得超过()。中国银行在上市前引进苏格兰皇家银行(RBS)等战略投资者是为了()。
印花税应计入“管理费用”科目核算。()
有人建议,在教育实践中,“要多使用奖励,尽量少惩罚”。请简要阐述你对这种建议的看法?
下列关于四川省的说法,正确的是()。
行动研究
Children’sliteraturetracesitsbeginningstopreliteratetimes,whenancientstorytellerspassedtalesandlegendsfromgenera
最新回复
(
0
)