首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得 ∫abf(x)dx=(b-a)ff’’(ξ).
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得 ∫abf(x)dx=(b-a)ff’’(ξ).
admin
2017-12-31
92
问题
设f(x)在区间[a,b]上阶连续可导,证明:存在ξ∈(a,b),使得
∫
a
b
f(x)dx=(b-a)f
f’’(ξ).
选项
答案
令F(x)=∫
a
x
f(t)dt,则F(x)在[a,b]上三阶连续可导,取x
0
=[*],由泰勒公式得 F(a)=F(x
0
)+F’(x
0
)(a-x
0
)[*](a-x
0
)
3
,ξ
1
∈(a,x
0
), F(b)=F(x
0
)+F’(x
0
)(b-x
0
)[*](b-x
0
)
3
,ξ
2
∈(x
0
,b), 两式相减得F(b)-F(a)=F’(x
0
)(b-a)+[*][F’’’(ξ
1
)+F’’’(ξ
2
)],即 ∫
a
b
f(x)dx=(b-a)f[*][f’’(ξ
1
)+f’’(ξ
2
)], 因为f’’(x)在[a,b]上连续,所以存在ξ∈[ξ,ξ
2
][*](a,b),使得 f’’(ξ)=[*][f’’(ξ
1
)+f’’(ξ
2
)],从而 ∫
a
b
f(x)dx=(b-a)[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/OUX4777K
0
考研数学三
相关试题推荐
设n阶矩阵A的秩为1,证明:A可以表示成n×1矩阵和1×n矩阵的乘积;
已知α1,α2,…,αs线性无关,β可由α1,α2,…,αs线性表出,且表示式的系数全不为零.证明:α1,α2,…,αs,β中任意s个向量线性无关.
求幂级数的和函数S(x).
求级数的和函数.
微分方程y"+2y’+2y=e-xsinx的特解形式为()
设向量组α1=[a11…a21,an1]T,α2=[a12,a22,…,an2]T,…,αs=[a1s,a2s,…ans]T.证明:向量组α1,α2,…,αs线性相关(线性无关)的充要条件是齐次线性方程组有非零解(有唯一零解).
在长为L的线段上任取两点,求两点距离的期望和方差.
已给线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多解?在方程组有无穷多解的情形下,试求出一般解。
求微分方程y″+4y=sin2x满足条件y(0)=0,y′(0)=1的特解.
级数sin(n+k)(走为常数)________.
随机试题
目前在WTO存在的单独关税区有()
Thisbirdisreallylovely,andI’veneverseen________one.
下列选项中不属于捕食的一项是()
土石坝施工中,当黏性土料含水量偏低时,主要应在()加水。
路基填土不得使用()等。
上个世纪60年代初以来,新加坡的人均预期寿命不断上升,到本世纪已超过日本,成为世界之最。与此同时,和一切发达国家一样,由于饮食中的高脂肪含量,新加坡人的心血管疾病发病率也逐年上升。从上述判定,最可能推出以下哪项结论?()
疼:哭
关于SDR,下列说法正确的是()。[南京大学2012金融硕士]
在"用户表"中有4个字段:用户名(文本型,主关键字),密码(文本型),登录次数(数字型),最近登录时间(日期/时间型)。在"登录界面"的窗体中有两个名为tUser和tPassword的文本框,一个登录按钮 Command0。进入登录界面后,用户输入用户名和
Somepeople’searsproducewaxlikebusylittlebees.Thiscanbeaproblemeventhoughearwax(耳垢)appearsto【S1】______animporta
最新回复
(
0
)