首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)2f(x),证明存在使得F’’(x0)=0.
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)2f(x),证明存在使得F’’(x0)=0.
admin
2017-05-10
33
问题
已知以2π为周期的周期函数f(x)在(一∞,+∞)上有二阶导数,且f(0)=0.设F(x)=(sinx一1)
2
f(x),证明存在
使得F’’(x
0
)=0.
选项
答案
显然[*]于是由罗尔定理知,存在[*] 使得F’(x
1
)=0.又 [*] 对F’(x)应用罗尔定理,由于F(x)二阶可导,则存在[*] 使得F’’(x
0
*
)=0. 注意到F(x)以2π为周期,F’(x)与F’’(x)均为以2π为周期的周期函数,于是存在x
0
=2π+x
0
*
,即[*]使得 F’’(x
0
)=F’’(x
0
*
)=0.
解析
首先,因f(x)是周期为2π的周期函数,则F(x)也必为周期函数,且周期为2π,于是只需证明存在
,使得F’’(x
0
*
)=0即可.
转载请注明原文地址:https://kaotiyun.com/show/OWH4777K
0
考研数学三
相关试题推荐
如图,连续函数y=f(x)在区间[-3,-2],[2,3]上的图片分别是直径为1的下、上半圆周,在区间[-2,0],[0,2]上的图形分别是直径为2的下、上半圆周.设F(x)=,则下列结论正确的是
A、 B、 C、 D、 C
[*]
Z
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的矩估计量;
已知A=(a1,a2,a3,a4),其中a1,a2,a3,a4为四维列向量,方程组AX=0的通解为k(2,一1,1,4)T,则a3可由a1,a2,a4线性表示为_____.
设总体X一N(μ,32),其中μ为未知参数,X1,X2,…,X16为来自总体X的样本,X为样本均值.如果对于检验Hoμ=μo,取拒绝域,在显著水平a=0.05下,k的值为_____.(附φ(1.65)=0.95,φ(1.96)=0.975)
设为正定矩阵,其中A,B分别为m阶,n阶对称矩阵,C为m×n矩阵.利用(I)的结果判断矩阵B~CTA-1C是否为正定矩阵,并证明你的结论.
证明:二次型f(X)=XTAX在XTX=1条件下的最大(小)值等于实对称矩阵A的最大(小)特征值。求三元函数f(x1,x2,x3)=3x12+2x22+3x32+2x1x3在x12+x22+x32=1条件下的最大及最小值,并求最大值点及最小值点。
随机试题
试举例说明几种常见的词法范畴。
临床诊疗道德的原则是
不参与桡腕关节组成的是
甲国籍人罗伯逊与家人久居乙国,其原始住所在甲国。罗伯逊在乙国和丙国均有生意和住所,不时去丙国照看生意,并与在丙国居住的父母小住。近年来,由于罗伯逊在中国的生意越来越好,因而长期居住于在北京某饭店包租的578号房间。现涉及丙国的纠纷在中国法院审理,关于罗伯逊
提高底层演播厅隔墙的隔声效果,应选用下列哪种材料?[2000—013,1999—038]
某上市公司的董事会要进行涉及一项关联交易的表决,该公司董事会共有16人组成,其中有高某等6人与所涉及的交易有关联关系,另有3个董事因故没有参加该次董事会。则()。
如何有效地进行知识概括?
简述公司并购财务协同效用理论的主要内容。(华东师范大学2014真题)
Economicsoftenmissesanimportantelementofinequalitybetweenmalesandfemales:unpaidwork.Themainmeasureofeconomica
Directions:Inthispart,youwillhave15minutestogooverthepassagequicklyandanswerthequestionsonAnswerSheet1.Fo
最新回复
(
0
)