首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0. 证明2a∫-aag(x)e-x2dx≤∫-aag(x)dx∫-aae-x2dx.
设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0. 证明2a∫-aag(x)e-x2dx≤∫-aag(x)dx∫-aae-x2dx.
admin
2018-09-25
52
问题
设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0.
证明2a∫
-a
a
g(x)e
-x
2
dx≤∫
-a
a
g(x)dx∫
-a
a
e
-x
2
dx.
选项
答案
因为当0≤x≤a时h’(x)≥0,h(x)单调增加;f(x)=e
-x
2
在0≤x≤a时单调减少,所以不论0≤x≤y≤a还是0≤y≤x≤a,均有 [h(x)-h(x)](e
-x
2
-e
-y
2
)≤0, 即只要(x,y)∈D={(x,y)|0≤x≤a,0≤y≤a},有 h(x)e
-x
2
+h(y)e
-y
2
≤h(x)e
-y
2
+h(y)e
-x
2
. 于是有 [*] 2∫
0
a
dy∫
0
a
h(x)e
-x
2
dx≤2∫
0
a
e
-y
2
dy∫
0
a
h(x)dx, 2a∫
0
a
h(x)e
-x
2
dx≤2∫
0
a
e
-y
2
dy∫
0
a
h(x)dx. 又因为h(x)与e
-x
2
都是偶函数,所以 a∫
-a
a
h(x)e
-x
2
dx≤[*]∫
-a
a
e
-y
2
dy∫
-a
a
h(x)dx, (*) 再以h(x)=g(x)+g(-x)代入,并注意到 ∫
-a
a
h(x)dx=∫
-a
a
[g(x)+g(-x)]dx =∫
-a
a
g(x)dx+∫
-a
a
g(-x)dx =∫
-a
a
g(x)dx+∫
-a
a
g(u)(-du) =2∫
-a
a
g(x)dx, 同理,∫
-a
a
h(x)e
-x
2
dx=2∫
-a
a
g(x)e
-x
2
dx. 从而式(*)成为2a∫
-a
a
g(x)e
-x
2
dx≤∫
-a
a
e
-x
2
dx∫
-a
a
g(x)dx.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/Oeg4777K
0
考研数学一
相关试题推荐
设f(x)是区间[-π,π]上的偶函数,且满足证明:f(x)在[-π,π]上的傅里叶级数展开式中系数a2n=0,n=1,2,….
求级数的和.
设f(x)在[0,1]连续,在(0,1)内f(x)>0且xf′(x)=f(x)+ax2,又由曲线y=f(x)与直线=1,y=0围成平面图形的面积为2,求函数y=f(x),问a为何值,此图形绕x轴旋转而成的旋转体体积最小?
在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?
已知Aαi=iαi(i=1,2,3),其中α1=(1,2,2)T,α2=(2,一2,1)T,α3=(一2,一1,2)T.求矩阵A.
已知ξ=的特征向量,求a,b的值,并证明A的任一特征向量均能由ξ线性表出.
求下列旋转体的体积V:(Ⅰ)由曲线y=x2,x=y2所围图形绕x轴旋转所成旋转体;(Ⅱ)由曲线x=a(t-sint),y=a(1-cost)(0≤t≤2π),y=0所围图形绕y轴旋转的旋转体.
设f(x,y,z)是连续函数,f(0,0,0)=0,I(R)=f(x,y,z)dxdydz则R→0时,下面说法正确的是().
无穷级数的收敛区间为_________。
设随机变量X1,X2,…,Xn(n>1)独立同分布,且方差σ2>0,记的相关系数为()
随机试题
下列属于可复性牙髓炎的诊断要点的是
四神丸的君药是四神丸的臣药是
根据《执业药师资格制度暂行规定》,下列叙述正确的有
下列出现哪些情况均可引起异常分娩()
如果计算机字长是8位,那么一128的补码表示为()。
《建筑法》规定,两个以上不同资质等级的单位实行联合共同承包的,应当按照资质等级________的单位的业务许可范围承揽工程。()
通过对会计入员的会计行为动机提出相应的会计职业道德要求,引导、规范、约束会计入员树立正确的职业观念,可以达到规范会计行为的目的。()
()是指对某个群体形成一种概括而固定的看法后,会据此去推断这个群体的每个成员的特征。
已知正方体的棱长为1,则这个正方体的外接球的直径为______.
软件开发工具不包括(15)。
最新回复
(
0
)