首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0. 证明2a∫-aag(x)e-x2dx≤∫-aag(x)dx∫-aae-x2dx.
设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0. 证明2a∫-aag(x)e-x2dx≤∫-aag(x)dx∫-aae-x2dx.
admin
2018-09-25
57
问题
设常数(a>0,函数g(x)在区间[-a,a]上存在二阶导数,且g’’(x)>0.
证明2a∫
-a
a
g(x)e
-x
2
dx≤∫
-a
a
g(x)dx∫
-a
a
e
-x
2
dx.
选项
答案
因为当0≤x≤a时h’(x)≥0,h(x)单调增加;f(x)=e
-x
2
在0≤x≤a时单调减少,所以不论0≤x≤y≤a还是0≤y≤x≤a,均有 [h(x)-h(x)](e
-x
2
-e
-y
2
)≤0, 即只要(x,y)∈D={(x,y)|0≤x≤a,0≤y≤a},有 h(x)e
-x
2
+h(y)e
-y
2
≤h(x)e
-y
2
+h(y)e
-x
2
. 于是有 [*] 2∫
0
a
dy∫
0
a
h(x)e
-x
2
dx≤2∫
0
a
e
-y
2
dy∫
0
a
h(x)dx, 2a∫
0
a
h(x)e
-x
2
dx≤2∫
0
a
e
-y
2
dy∫
0
a
h(x)dx. 又因为h(x)与e
-x
2
都是偶函数,所以 a∫
-a
a
h(x)e
-x
2
dx≤[*]∫
-a
a
e
-y
2
dy∫
-a
a
h(x)dx, (*) 再以h(x)=g(x)+g(-x)代入,并注意到 ∫
-a
a
h(x)dx=∫
-a
a
[g(x)+g(-x)]dx =∫
-a
a
g(x)dx+∫
-a
a
g(-x)dx =∫
-a
a
g(x)dx+∫
-a
a
g(u)(-du) =2∫
-a
a
g(x)dx, 同理,∫
-a
a
h(x)e
-x
2
dx=2∫
-a
a
g(x)e
-x
2
dx. 从而式(*)成为2a∫
-a
a
g(x)e
-x
2
dx≤∫
-a
a
e
-x
2
dx∫
-a
a
g(x)dx.证毕.
解析
转载请注明原文地址:https://kaotiyun.com/show/Oeg4777K
0
考研数学一
相关试题推荐
已知向量β可以由α1,α2,…,αs线性表出,证明:表示法唯一的充分必要条件是α1,α2,…,αs线性无关.
设A,B都是m×n矩阵,则r(A+B)≤r(A)+r(B).
计算下列定积分:(Ⅰ),cosx}dx;(Ⅱ)f(x-1)dx,其中f(x)=
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,一1)T,(1,一1,0)T是A的3个特征向量,求A.
已知ξ=的特征向量,求a,b的值,并证明A的任一特征向量均能由ξ线性表出.
求函数f(x)=dt在区间[e,e2]上的最大值·
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
设随机变量X1,X2,X3,X4相互独立,且都服从正态分布N(0,σ2).如果二阶行列式Y=的方差D(Y)=,则σ2=___________.
微分方程y″+2y′+y=xe-x的特解形式为().
(2001年)设则
随机试题
普洱方茶产于_______。
下列关于原发慢性肾上腺皮质功能减退症患者实验室检查的描述中,不正确的是
A.气痛B.痰痛C.湿痛D.化脓痛E.瘀血痛疼痛轻微,或隐隐作痛,皮色不变,压之酸痛,为
A.心胆气虚B.胆郁痰扰C.心血不足D.心阳亏虚E.心脉痹阻
下列房地产经营活动属于房地产二级市场的是()。
永安厂购进钢材抵扣进项税额须具备的条件是( ):永安厂合作建房、售房的业务应缴纳营业税适用的税目为( )。
企业实行价格歧视的基本原则是()。
无论一般纳税人还是小规模纳税人销售自己使用过的旧固定资产,自2002年1月1日起按4%的征收率减半征收增值税。()
任何教师上课前都应该写课时计划,课时计划可以有详有略。()
Withtherecentrapidadvancesininformationtechnologies,educationalresearchersateverylevelandinevery【B1】______haved
最新回复
(
0
)