首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)=4x3+3x2—6x,求f(x)的极值点; (Ⅱ)设有x=∫0ye—t2(y∈(—∞,+∞)),它的反函数是y=y(x),求y=y(x)的定义域及拐点.
(Ⅰ)设f(x)=4x3+3x2—6x,求f(x)的极值点; (Ⅱ)设有x=∫0ye—t2(y∈(—∞,+∞)),它的反函数是y=y(x),求y=y(x)的定义域及拐点.
admin
2020-04-21
49
问题
(Ⅰ)设f(x)=4x
3
+3x
2
—6x,求f(x)的极值点;
(Ⅱ)设有x=∫
0
y
e
—t
2
(y∈(—∞,+∞)),它的反函数是y=y(x),求y=y(x)的定义域及拐点.
选项
答案
(Ⅰ)先求f′(x)=12x
2
+6x—6=6(2x—1)(x+1). 方法:由 [*] 可知x= —1为f(x)的极大值点,x=[*]为f(x)的极小值点. (Ⅱ)由变限积分求导法得[*]=e
—y
2
>0,即x=x(y)在(—∞,+∞)上连续又单调上升,它的值域是 [*],于是它的反函数y=y(x)的定义域是[*] 现由反函数求导法得[*]=e
e
2
,再由复合函数求导法得 [*]=2ye
2y
2
方法: [*] 其中,x∈定义域. 同样得到只有(0,0)是拐点.
解析
转载请注明原文地址:https://kaotiyun.com/show/P684777K
0
考研数学二
相关试题推荐
[2008年]设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
[2006年]设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解.(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2003年]若矩阵A=相似于对角矩阵A,试确定常数a的值;并求可逆矩阵P,使P-1AP=A.
[2008年]设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量.向量a3满足Aα3=α2+α3.(1)证明α1,α2,α3线性无关;(2)令P=[α1,α2,α3],求P-1AP.
[2016年]设二次型f(x1,x2,x3)=a(x12+x22+x32)+2x1x2+2x2x3+2x3x1的正、负惯性指数分别为1,2,则().
[2012年]设当实数a为何值时,方程组AX=β有无穷多解,并求其通解.
令f(χ)=χ-[χ],求极限
设φ(x)是以2π为周期的连续函数,且Φ’(x)=φ(x),Φ(0)=0.求方程y"+ysinx=φ(x)ecosx的通解;
设f(χ)=,求f(χ)的间断点,并分类.
e先用洛必达法则去掉分子、分母的积分号,再按幂指函数求其极限的方法求之.解或
随机试题
证见胸膈痞闷,脘腹胀痛,嗳腐吞酸,恶心呕吐,饮食不消,宜用
患者,男,34岁。5天前有不洁性接触史,昨日开始尿痛、尿频、尿道口出现少许分泌物,今日症状加重,分泌物变成黄色脓性。确诊淋病的检验结果应是
A.吸收的相互作用B.分布的相互作用C.代谢的相互作用D.排泄的相互作用E.消除的相互作用
《江城晚报》记者张某在某报上发表一篇评论性文章,文中谈道:“江城文坛中,有的作家剽窃别人的作品当作自己的作品出版,有的作家昧着良心沦为有钱人的‘枪手’,文化素质和道德水平都有待大幅度地提高。”该报在江城所辖的甲、乙、丙、丁四个区发行。该市的作家陈某和李某认
宏达公司与高图公司签订了一份电脑买卖合同。约定由高图公司向宏达公司提供50台装有win10系统的电脑,合同履行期为2012年10月9日,宏达公司验收合格后再付款。高图公司按时供货,宏达公司收货后发现,该批电脑安装的只是winXP系统,不能满足公司的运营需要
下列关于可供出售金融资产的会计处理中,正确的有()。
甲:“你认为《末代皇帝》拍得好吗?”乙:“我认为不算好。”甲:“那就是说,你认为坏了?”乙:“不,我并没有说坏。”甲:“说不好就是坏!”下面哪个选项不可能是对甲、乙对话的正确评价?
能源危机及影响——1991年英译汉及详解Thefactisthattheenergycrisis,whichhassuddenlybeenofficiallyannounced,hasbeenwithusforal
JapaneseLanguageTodayIfyouwantproofthattheJapaneselanguageisindecline,justwatchafewparliamentarydebatesa
Whoisthespeaker?
最新回复
(
0
)