首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)=4x3+3x2—6x,求f(x)的极值点; (Ⅱ)设有x=∫0ye—t2(y∈(—∞,+∞)),它的反函数是y=y(x),求y=y(x)的定义域及拐点.
(Ⅰ)设f(x)=4x3+3x2—6x,求f(x)的极值点; (Ⅱ)设有x=∫0ye—t2(y∈(—∞,+∞)),它的反函数是y=y(x),求y=y(x)的定义域及拐点.
admin
2020-04-21
53
问题
(Ⅰ)设f(x)=4x
3
+3x
2
—6x,求f(x)的极值点;
(Ⅱ)设有x=∫
0
y
e
—t
2
(y∈(—∞,+∞)),它的反函数是y=y(x),求y=y(x)的定义域及拐点.
选项
答案
(Ⅰ)先求f′(x)=12x
2
+6x—6=6(2x—1)(x+1). 方法:由 [*] 可知x= —1为f(x)的极大值点,x=[*]为f(x)的极小值点. (Ⅱ)由变限积分求导法得[*]=e
—y
2
>0,即x=x(y)在(—∞,+∞)上连续又单调上升,它的值域是 [*],于是它的反函数y=y(x)的定义域是[*] 现由反函数求导法得[*]=e
e
2
,再由复合函数求导法得 [*]=2ye
2y
2
方法: [*] 其中,x∈定义域. 同样得到只有(0,0)是拐点.
解析
转载请注明原文地址:https://kaotiyun.com/show/P684777K
0
考研数学二
相关试题推荐
[2004年]设n阶矩阵A=(I)求A的特征值和特征向量;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
[2008年]设三阶矩阵A的特征值为2,3,λ.若行列式∣2A∣=一48,则λ=________.
[2014年]行列式==().
[2015年]设D是第一象限中曲线2xy=1,4xy=1与直线y=x,y=√3x围成的平面区域:函数f(x,y)在D上连续,则f(x,y)dxdy=().
[2011年]设函数y(x)具有二阶导数,且曲线l:y=y(x)与直线y=x相切于原点.记α为曲线z=l在点(x,y)处切线的倾角,若,求y(x)的表达式.
求函数y=的导数.
设z=z(x,y)由3x2-2xy+y2-yz-z2+22=0确定的二元函数,求其极值。
设函数y=y(x)在(-∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=2/3的解。
设闭曲线的方向与z轴正向满足右手法则,求曲线积分
随机试题
分娩后发生窒息不恰当的处理原则是
下列哪项不是静脉肾盂造影的禁忌证
牙周膜中的神经()
肾病综合征最基本的表现是()
TMF(电信管理论坛)推出的()模型,提供了电信企业运营流程的完整架构,有望成为世界电信运营流程架构的标准。
下列各项中,不得在企业所得税税前扣除的有()。
下列各项中,应计入城市维护建设税计税依据的有()。
评价主体通过科学合理的教学评价,激发教师和学生的内在动机,调动他们的潜能,增进工作、学习的积极性与创造性等,这体现了评价的()功能。
人类正面临着全球变暖的挑战,联合国的一份报告向我们描述了气候变化产生的灾难性后果:森林消失和沙漠扩大,将使非洲成为受影响最广的地区;热带流行的疟疾和寄生虫病将向北蔓延,使欧洲出现流行病,地中海地区由于严重缺水会半沙漠化,滑雪运动在欧洲将荡然无存;在英国,肆
WheneverIseeanyonebuyingaNationalLotteryticketIwanttostopthemandaskiftheyknowjustwheretheirmoneyisgoing.
最新回复
(
0
)