首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型F(x1,x2,x3)=x1+ax2+x3+2x2x3-2x1x-2axx3的正负惯性指数都是1. (Ⅰ)计算a的值; (Ⅱ)用正交变换将二次型化为标准形; (Ⅲ)当x满足xTx=2时,求f的最大值与最小值.
设二次型F(x1,x2,x3)=x1+ax2+x3+2x2x3-2x1x-2axx3的正负惯性指数都是1. (Ⅰ)计算a的值; (Ⅱ)用正交变换将二次型化为标准形; (Ⅲ)当x满足xTx=2时,求f的最大值与最小值.
admin
2019-12-23
48
问题
设二次型F(x
1
,x
2
,x
3
)=x
1
+ax
2
+x
3
+2x
2
x
3
-2x
1
x-2axx
3
的正负惯性指数都是1.
(Ⅰ)计算a的值;
(Ⅱ)用正交变换将二次型化为标准形;
(Ⅲ)当x满足x
T
x=2时,求f的最大值与最小值.
选项
答案
由|λE-A|=[*]=(λ-2)(λ-1)(λ+1), 得A的特征值为2,1,-1.因此A相似于[*] 进而求得对应于2,1,-1的特征向量分别为 [*] 令P=(η
1
,η
2
,η
3
),则有P
-1
AP=[*] 又因为B是下三角矩阵,所以特征值为2,1,-1.B也相似于[*] 进而求得对应2,1,-1的特征向量分别为ξ
1
=[*] 令Q(ξ
1
,ξ
2
,ξ
3
),则Q
-1
BQ=[*] 因此P
-1
AP=Q
-1
BQ,所以B=QP
-1
APQ
-1
=(PQ
-1
)
-1
A(PQ
-1
), 令X=PQ
-1
=[*]即为所求.
解析
转载请注明原文地址:https://kaotiyun.com/show/PXS4777K
0
考研数学一
相关试题推荐
求y=|x|+|x-1|-|4-2x|的最大值与最小值.
设A是n阶方阵,2,4,…,2n是A的n个特征值,E是n阶单位阵.计算行列式|A-3E|的值.
构造正交矩阵Q,使得QTAQ是对角矩阵
设A,B均是n阶矩阵,其中|A|=-2,|B|=3,|A+B|=6,则||A|B*+|B|A*|=___________.
函数(Ⅰ)将f(x)展开成(x-1)的幂级数,并求此幂级数的收敛域;(Ⅱ)在此收敛域上,该幂级数是否都收敛于f(x)?如果在某处收敛而不收敛于f(x)在该处的值,那么收敛于什么?均要求说明理由.
设二次型满足=2,AB=O,其中B=(Ⅰ)用正交变换化二次型为标准形,并求所作正交变换;(Ⅱ)求该二次型;(Ⅲ)f(x1,x2,x3)=1表示什么曲面?
设二次型xTAx=x12+x22+x32+2ax1x2+2bx1x3+2cx2x3,矩阵满足AB=0.求(A一3E)6.
设α1,α2,…,αs都是实的n维列向量,规定n阶矩阵A=α1α1T+α2α2T+…+αsαsT.设r(α1,α2,…,αs)=k,求二次型XTAX的规范形.
随机试题
在二元溶液的x-y图中,平衡线与对角线的距离越远,则该容易就越易分离。()
完善和发展中国特色社会主义制度,推进国家治理体系和治理能力现代化,后一句规定了()
A.浆液性囊腺瘤B.卵巢恶性畸胎瘤C.颗粒细胞瘤D.卵巢黄素囊肿E.纤维瘤发生于体腔上皮者
国际工程承包合同主要是业主通过()的方式确定承包商后订立。
适应性组织又叫做()。
行政裁决一般不是终局裁决,对之不服,仍可起诉。()
认识运动的辩证过程,首先是从实践到认识的过程。所谓由实践到认识,也就是在实践的基础上形成感性认识,并由感性认识上升到理性认识。感性认识和理性认识的区别是()
y"一2y’一3y=e-x的通解为______.
以下可以将变量A、B值互换的是()。
AfamousUSclimatescientistatthecentreofthe"climategate"hasbeenvirtuallyclearedofprofessionalmisconductbyanint
最新回复
(
0
)