首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A(f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,又f
(Ⅰ)设f(x)在[x0,x0+δ)((x0-δ,x0])连续,在(x0,x0+δ)((x0-δ,x0))可导,又,求证:f’+(x0)=A(f’-(x0)=A). (Ⅱ)设f(x)在(x0-δ,x0+δ)连续,在(x0-δ,x0+δ)/{x0}可导,又f
admin
2019-03-21
57
问题
(Ⅰ)设f(x)在[x
0
,x
0
+δ)((x
0
-δ,x
0
])连续,在(x
0
,x
0
+δ)((x
0
-δ,x
0
))可导,又
,求证:f’
+
(x
0
)=A(f’
-
(x
0
)=A).
(Ⅱ)设f(x)在(x
0
-δ,x
0
+δ)连续,在(x
0
-δ,x
0
+δ)/{x
0
}可导,又
f’(x)=A,求证:f’(x
0
)=A.
(Ⅲ)设f(x)在(a,b)可导,x
0
∈(a,b)是f’(x)的间断点,求证:x=x
0
是f’(x)的第二类间断点.
选项
答案
(Ⅰ)f’
+
(x
0
)[*].另一类似. (Ⅱ)由题(Ⅰ)[*]f’
+
(x
0
)=f’
-
(x
0
)=A[*]f’(x
0
)=A.或类似题(Ⅰ),直接证明 [*] (Ⅲ)即证[*]f’(x)中至少有一个不[*].若它们均存在,[*]f’(x)=A
±
,由题(Ⅰ)[*]f’
±
(x
0
)=A
±
.因f(x)在x
0
可导[*]A
+
=A
-
=f’(x
0
)[*]f’(x)在x=x
0
连续,与已知矛盾.因此,x=x
0
是f’(x)的第二类间断点.
解析
转载请注明原文地址:https://kaotiyun.com/show/2LV4777K
0
考研数学二
相关试题推荐
设η1,…,ηs是非齐次线性方程组AX=b的一组解,则志k1η1+…+ksηs为方程组AX=b的解的充分必要条件是_______
设A,B均为n阶实对称矩阵,若A与B合同,则()
由曲线y=1一(x一1)2及直线y=0围成图形(如图3—2)绕y轴旋转而成的立体的体积V是()
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
抛物线y2=2x与直线y=x一4所围成的图形的面积为()
设3阶矩阵A=(aij)的行列式|A|=2,设初等矩阵试分别计算PiA与APi,并求det(PiA)与det(APi)的值,i=1,2,3.
设y=y(x)由方程组(*)确定,求
建一容积为V0的无盖长方体水池,问其长、宽、高为何值时有最小的表面积.
随机试题
根据医师执业注册制度,受理申请医师注册的卫生行政部门在收到注册申请后,应在自收到申请之日起多少日内作出准予注册或不予注册的书面答复
A.受纳与腐熟水谷B.主津C.贮藏与排泄胆汁D.主液E.贮尿和排尿小肠功能为
在管线布置中。除满足一般规定外,还应按专门规范或标准设计,哪种地区情况不属此类?[2003年第75题]
规划用电负荷的控制指标包括()。
下列各条中,()是英国密尔顿•凯恩斯(MiltonKeynes)规划的特点。
能鉴别学业水平高低、能力强弱的测验表明其()很高。
敬业主要是规范公民与职业的道德关系,奉献主要是规范公民与社会的道德关系和对待他人的()。
关于行政决策枢纽系统的说法,不正确的是()。
求下列极限:
Itwaslateintheafternoon,andIwasputtingthefinaltouchonapieceofwritingthatIwasfeelingprettygoodabout.Iwa
最新回复
(
0
)