首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有________。
设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有________。
admin
2022-10-08
79
问题
设F(x)是连续函数f(x)的一个原函数,
表示“M的充分必要条件是N”,则必有________。
选项
A、F(x)是偶函数
f(x)是奇函数
B、F(x)是奇函数
f(x)是偶函数
C、F(x)是周期函数
f(x)是周期函数
D、F(x)是单调函数
f(x)是单调函数
答案
A
解析
解法一
任一原函数可表示为F(x)=∫
0
x
f(t)dt+C,且F’(x)=f(x)
当F(x)为偶函数时,有F(-x)=F(x),于是F’(-x)·(-1)=F’(x),即-f(-x)=f(x),也即f(-x)=-f(x),可见f(x)为奇函数。
反过来,若f(x)为奇函数,则∫
0
x
f(t)dt为偶函数,从而F(x)=∫
0
x
f(t)dt+C为偶函数,可见A为正确选项。
解法二
令f(x)=1,则取F(x)=x+1,排除B,C;令f(x)=x,则取F(x)=
x
2
,排除D,选A。
转载请注明原文地址:https://kaotiyun.com/show/PYR4777K
0
考研数学三
相关试题推荐
设当x→0时,In(1+x)-(ax2+bx)是比xarcsinx高阶的无穷小量,试求常数a和b.
[*]
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,试证α1,α2,α3线性无关.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f′(x)>0,如果存在,证明:f(x)>0,x∈(a,b);
设矩阵已知A有3个线性无关的特征向量,λ=2是A的二重特征值.试求可逆矩阵P,使得P-1AP为对角形矩阵.
设函数如果f"(0)存在,求常数a,b.
已知函数f(x)二阶可导,曲线y=f"(x)的图形如图2—3所示,则曲线y=f(x)()
设y=g(x,z),而x是由方程f(x-z,xy)=0所确定的x,y的函数,求
设连续型随机变量X的分布函数为试求:常数A,B;
设函数则曲线y=f(x)与x轴所围成的平面图形的面积为___________.
随机试题
试述太平天国农民战争的意义。
阅读《答李翊书》中的一段文字,然后回答问题。气,水也;言,浮物也。水大而物之浮者大小毕浮。气之与言犹是也,气盛则言之短长与声之高下者皆宜。……“气”和“言”指的是什么?
关于犯罪嫌疑人、被告人逃匿、死亡案件违法所得的没收程序,下列哪一说法是正确的?(2012年试卷2第38题)
以下对爆破作业描述不正确的是()。(1)雷雨季节宜采用电雷管起爆法起爆。(2)炸药反应不完全时,不会引起有毒气体含量增加。(3)同一爆破网络应使用同厂、同批、同型号的电雷管。(4)处理盲炮时进行安全警戒。
行业的成长实际上是指( )。
企业会计方法和程序前后各期( )。
某公司正处于快速发展时期,急需高素质人才加盟,为此人力资源部门和多家猎头公司签订了合作协议,开始进行大张旗鼓的人才招募选拔。该公司人才招募选拔的流程是:猎头公司推荐候选人,候选人资料经人力资源部经理筛选后交总经理审阅,由总经理决定是否面试,再由人力资源部和
根据《企业所得税法》及其实施条例的有关规定,不得提取折旧的固定资产是()。
出境旅游领队带领旅游团入中国境的服务包括()
(2015·河南)既是课程标准的具体化,也是师生进行教学的主要依据的是教科书。()
最新回复
(
0
)