首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有________。
设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有________。
admin
2022-10-08
91
问题
设F(x)是连续函数f(x)的一个原函数,
表示“M的充分必要条件是N”,则必有________。
选项
A、F(x)是偶函数
f(x)是奇函数
B、F(x)是奇函数
f(x)是偶函数
C、F(x)是周期函数
f(x)是周期函数
D、F(x)是单调函数
f(x)是单调函数
答案
A
解析
解法一
任一原函数可表示为F(x)=∫
0
x
f(t)dt+C,且F’(x)=f(x)
当F(x)为偶函数时,有F(-x)=F(x),于是F’(-x)·(-1)=F’(x),即-f(-x)=f(x),也即f(-x)=-f(x),可见f(x)为奇函数。
反过来,若f(x)为奇函数,则∫
0
x
f(t)dt为偶函数,从而F(x)=∫
0
x
f(t)dt+C为偶函数,可见A为正确选项。
解法二
令f(x)=1,则取F(x)=x+1,排除B,C;令f(x)=x,则取F(x)=
x
2
,排除D,选A。
转载请注明原文地址:https://kaotiyun.com/show/PYR4777K
0
考研数学三
相关试题推荐
设二维随机变量(X,Y)在矩形域D={(x,y)|0≤x≤2,0≤y≤1}上服从均匀分布(如图4—1),记求U和V的相关系数ρXY.
一汽车沿街道行驶,需要经过三个均设有红绿信号灯的路口,每个信号灯均为红或绿与其他信号灯为红或绿相互独立,且红绿两种信号灯显示的时间相等.以X表示该汽车首次遇到红灯前已通过的路口的个数.求
2设则
设向量组α1=(a,3,1)T,α2=(2,6,3)T,α3=(1,2,1)T,α4=(2,3,1)T的秩为2,求a,b的值及该向量组的一个极大线性无关组,并把其余向量用此极大线性无关组线性表示.
设函数f(x)在区间[-1,1]上有三阶连续导数,且f(-1)=0,f(1)=1,f′(0)=0,证明:在(-1,1)内至少存在一点ξ,使得f′"(ξ)=3.
设函数f(x)在[0,2]上连续,在(0,2)内可导,且f(0)=1,f(1)=0,f(2)=3,证明至少存在一点ξ,使得f′(ξ)=0.
设两函数f(x)及g(x)都在x=a处取得极大值,则函数r(x)=f(x)g(x)在x=a处()
一电子仪器由两部分构成,以X和Y分别表示两部分部件的寿命(单位:千小时),已知X和Y的联合分布函数为求两部件的寿命都超过100小时的概率α.
已知曲线与曲线在点(x0,y0)处有公共切线.求(1)常数a及切点(x0,y0);(2)两曲线与x轴围成的平面图形绕x轴旋转所得旋转体体积Vx.
设有微分方程y’-2y=q(x),其中试求在(-∞,+∞)内的连续函数y=y(x),使之在(-∞,1)和(1,+∞)内都满足微分方程,且满足条件y(0)=0.
随机试题
以下_______不是促销的基本目标。
OneofmyfondestChristmasmemorieswasalsooneofourfamily’sbleakest(最令人沮丧的).Wewerejustlittlekids,andonChristma
为预防麻疹可
患者,男,18岁,感冒后鼻衄,鼻腔干燥,口干,咳嗽少痰,低热,舌质红,苔薄黄,脉数,治法应
“救人闯红灯”是否应受罚?谈谈你的观点。
诗歌的翻译者必须实现字与字的对译,这在任何语言中都是不存在的,正如钢琴的旋律不可能发生在小提琴的演奏中一样。当然,小提琴可以演奏与钢琴同样的作品,但是,只有小提琴演奏者按着小提琴固有的、内在的风格演奏,才可以完美地表现原作的精神。以下哪个选项表明了作者的论
Withineconomictheory,thereareinanycasequitedifferentassumptionsaboutindividualbehaviour.Someneoclassicalmodelsa
在OSI参考模型中指出同一个系统相邻两层实体间交互是通过()进行的。
Manyinstructorsbelievethataninformal,relaxedclassroomenvironmentis【1】tolearningandinnovation.Itisnotuncommon
ACompany’sBattletoShowItWasaVictimofAbusiveShort-sellingA)Shortsellersbetagainstcompaniesbyborrowingtheirs
最新回复
(
0
)