首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[-3,3]上二阶可导,且,又f2(0)+[f'(0)]2=6。证明在(-3,3)内至少存在一点ξ,使得f(ξ)=f"(ξ)=0。
设函数f(x)在[-3,3]上二阶可导,且,又f2(0)+[f'(0)]2=6。证明在(-3,3)内至少存在一点ξ,使得f(ξ)=f"(ξ)=0。
admin
2019-01-25
32
问题
设函数f(x)在[-3,3]上二阶可导,且
,又f
2
(0)+[f'(0)]
2
=6。证明在(-3,3)内至少存在一点ξ,使得f(ξ)=f"(ξ)=0。
选项
答案
根据拉格朗日中值定理, f(0)-f(-3)=3f'(η
1
),η
1
∈(-3,0), f(3)-f(0)=3f'(η
2
),η
2
∈(0,3)。 已知[*],因此有 [*] 令φ(x)=f
2
(x)+[f'(x)]
2
,φ(x)在[η
1
,η
2
]上连续,则[*]。 已知f
2
(0)+[f'(0)]
2
=6,则φ(0)=6,设φ(x)在[η
1
,η
2
]上的最大值点为ξ,则φ(ξ)≥6,且φ'(ξ)=0,即 φ'(ξ)=2f(ξ)f'(ξ)+2f'(ξ)f"(ξ)=0, 由于φ(ξ)=f
2
(ξ)+[f'(ξ)]
2
≥6且[*],因此f'(ξ)≠0。综上可得存在点ξ,使得 f'(ξ)+f"(ξ)=0。
解析
本题考查拉格朗日中值定理。根据所证结论构造函数φ(x)=f
2
(x)+[f'(x)]
2
,对其两端同时求导,利用已知条件证明存在某点ξ,使得f'(ξ)≠0,从而结论成立。
转载请注明原文地址:https://kaotiyun.com/show/PhP4777K
0
考研数学三
相关试题推荐
设函数f(x)=的和.
已知a0=3,a1=5,对任意的n>1,有nan=an—1—(n一1)an—1.证明:当|x|<1时,幂级数anxn收敛,并求其和函数S(x).
已知{an}是单调增加且有界的正数列,证明:级数收敛.
判定级数的敛散性.
已知随机变量X和Y的分布律为而且P(X—Y)=,则X与Y的相关系数为__________.
设函数p(x)和f(x)在x∈[0,+∞)上连续,且p(x)=a>0,|f(x)|≤b,a和b均为常数.试证:微分方程+p(x)y=f(x)的一切解在x∈[0,+∞)上皆有界.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx=f(2),试证:存在一点ξ∈(0,2),使得f"(ξ)=0.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|X|<X}=α,则X等于()
设级数都发散,则().
随机试题
下列哪种形态的肿块癌变的可能性大()
患者,女性,50岁。因在家燃烧煤气取暖突然昏倒。患者面色潮红,口唇呈樱桃红色,脉快,多汗,神志不清伴发热。确诊的首选检查是
以下哪项是新生儿败血症的特征性表现
关于募股资金运用的披露要求中,错误的是()
“为什么”“哪些因素”“什么原理”“什么关系”这些关键词最适用的提问方式是()。
垃圾站建在一个地方.专家鉴定不会造成危害,居民区阻止施工.要你去调解。怎么处理?
《九辩》确立了中国文学史上的什么主题:_______。
定义应用需求的原型生命周期应是一个迭代过程,而其迭代工作量主要集中在【】。
Childrenlearnalmostnothingfromtelevision,andthemoretheywatchthelesstheyremember.Theyregardtelevisionpurely26
Whichofthefollowingreflexivepronouns(反身代词)isusedforemphasis?
最新回复
(
0
)